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Course overview

Session 1 Friday 25 November (E. Devijver)
Introduction to causal graphical models

Session 2 Friday 2 December (E. Gaussier - C. Assaad)
Structural equation models, structural causal models
Causal discovery: constraint-based methods

Session 3 Friday 9 December (E. Devijver)
Lab on introduction to graphs and PC algorithm

Session 4 Friday 16 December (C. Assaad, E. Gaussier)
Causal discovery: noise-based, score-based and other
methods

Session 5 Friday 6 January (C. Assaad, E. Devijver)
Backdoor and frontdoor criteria
Do-calculus

Session 6 Friday 13 January (C. Assaad, E. Gaussier)
History
Lab on Simpson’s paradox
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Causality

Does Obesity Shorten Life? Or is it the Soda? (Pearl, 2018)

Data Causal graph

Causal discovery

Causal reasoning

Many applications in machine learning, medecine (science in
general), root cause analysis, ...
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Causes and effects

The same causes produce the same effects ..., do they?

▸ Smoking causes lung cancer
▸ The sound of your alarm makes you wake up
▸ Cause: I flipped the light switch - Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

→ Probabilistic Causal Models
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(conditional) Independence

Conditional independence of random variables For a
distribution P, X and Y are independent conditioned on Z ,
noted X ⊥⊥P Y ∣Z , if:

P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z)
or P(X ∣Y ,Z) = P(X ∣Z) if P(Y ,Z) > 0

Illustration
▸ Z ∼ Bi(9,0.5), X ∣Z = z ∼ N(z,1) and Y ∣Z = z ∼ N(z,1)
▸ Z ∼ Bi(3,0.5), X ∼ Exp(1) and

Y ∣X = x ∼ 0.15δ0 + 0.85Pois(x)
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Probabilistic causal models (1)

A tuple M = ⟨(U ,V,F ,P(U))⟩ with
1. U is a set of unobserved background variables which can’t

be manipulated
2. V = {X1, ...,Xn} is a set of observed variables
3. F is a set of functions s.t. fi (1 ≤ i ≤ n) specifies Xi :

Xi = f (Ei) with Ei ⊆ U ∪V
4. P(U) is a joint distribution over U
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Probabilistic causal models (2)

P(U) and F induce a joint distribution over V:

P(V) = ∑
u∈DU

P(V,u)

= ∑
u∈DU

P(V ∣u)P(u)

= ∑
u∈DU

n
∏
i=1

P(xi ∣x1, ...,xi−1,u)P(u)
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Probabilistic causal models (3)

Induced graph The graph G(M) induced by a probabilistic
causal model M has vertices V and an edge Xi → Xj whenever
fi depends on Xj . In addition, G contains a bidirected edge,
denoted Xi ⇠⇢ Xj , whenever fi and fj depend on a common
subset of U

Markovian causal model A causal model M is Markovian if the
graph induced by M contains no bidirected edges (causal
sufficiency)
P(V) does not depend on U in Markovian causal models
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Example

X1: season (can take on 4 values)
X2: rain (binary yes/no)
X3: sprinkler (binary on/off)
X4: wet (binary yes/no)
X5: slippery (binary yes/no)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

With no confounders:

P(V) =P(X1)P(X2 ∣X1)P(X3 ∣X1)
P(X4 ∣X2,X3)P(X5 ∣X4)
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Example (cont’d)

Conditioning vs intervention
X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5
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Example (cont’d)

Conditioning

P(X1,X2,X4,X5 ∣X3 = off) =
P(X1,X2,X4,X5,X3 = off)

∑x1
P(X1 = x1)P(X3 = off ∣X1 = x1)

=
P(X1)P(X2 ∣X1)P(X3 = off ∣X1)P(X4 ∣X2,X3 = off)P(X5 ∣X4)

∑x1
P(X1 = x1)P(X3 = off ∣X1 = x1)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5
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Example (cont’d)

Intervention

PX3=off (X1,X2,X4,X5) = P(X1)P(X2 ∣X1)P(X4 ∣X2,X3 = off )P(X5 ∣X4)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5
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Example (cont’d)

Conditioning vs intervention

P(X1,X2,X4,X5 ∣X3 = off ) vs PX3=off (X1,X2,X4,X5)

Identification (identifiability)
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Interventional theory

Causation in the interventional theory

▸ A causes B if and only if there is a possible intervention on
A which changes B

▸ An intervention on A must completely disrupt the causal
relation between A and its previous causes so that the
value of A is entirely fixed by this intervention
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Causal discovery vs causal inference

Causal discovery From observational data, infer causal graph
with or without hidden confounders (hidden common causes) -
courses 2, 3 and 4

Causal inference Reasoning on the causal graph through
interventions (and asking counterfactual questions) - courses 5
and 6

Data Causal graph

Causal discovery

Causal reasoning
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Basic graph concepts

Let us consider the following graph G = (V,E):

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Directed path: A→ B → E → F → G (A ∼∼∼> G)

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Path (trail): D ← B → E ← C (D○∼∼∼○C)

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Parents, ancestors: Pa(E) = {B,C},

An(E) = {A,B,C,E}

An: transitive closure of the parents relation

B C

D

F

G

A

E

A

E
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B C

D

F

G

A

E

A

E
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Basic graph concepts (cont’d)

Children, descendants: Ch(C) = {E ,F},

De(C) = {C,E ,F ,G}

De: transitive closure of the children relation

A

B

D E

F

C

G

C

G
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Children, descendants: Ch(C) = {E ,F}, De(C) = {C,E ,F ,G}
De: transitive closure of the children relation

A

B

D E

F

C

G

C

G
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Basic graph concepts (cont’d)

Upwards-closed sets: a subset of nodes S is upward-closed (or
ancestral) if ∀S ∈ S,An(S) ⊆ S

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Induced subgraph G[S]: G[{B,C,D,F}]

A

B C

D E

F

G
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Bayesian networks and compatibility

A Bayesian network is a DAG (directed acyclic graph)
G = (V,E) along with a joint distribution P(V) that admits the
factorization P(V) = ∏X∈V P(X ∣PaG(X))

Compatibility We say that a distribution P(V) is compatible with
(or Markov relative to) a DAG G = (V,E) if
P(V) = ∏X∈V P(X ∣Pa(X)). We denote by P(V) the set of
distributions compatible with G.
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Observation

Upwards-closed set If P is compatible with G and S ⊆ V is
upwards-closed, then P(S) is compatible with G[S], i.e.,
P(S) = ∏S∈S P(S ∣Pa(S))

A

B C

D E

F

G
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Markov conditions

Ordered Markov condition P is compatible with G iff in any
topological ordering each Xi is independent of its
non-descendants given its parents

Topological ordering: for any edge Xi → Xj , i < j

Parental Markov condition P is compatible with G iff every
variable is independent of its non-descendants given its parents

X2

X3 X1

X4 X6

X5

X7
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Conditioning on common ancestors

Property For disjoint X ,Y,Z ⊆ V, if An(X) ∩An(Y) ⊆ Z and
An(Z) ⊆ (Z), then

X ⊥⊥P Y ∣Z
i.e.,P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z)

in any distribution P compatible with G

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 28



Causal Bayesian networks

Causal Markov condition Every Markovian causal model M
induces a distribution that is compatible with the induced graph
G[M]

Causal Bayesian network (Pearl 2000) Let P(V) be a
probability distribution and let Ps(V) denote the distribution
resulting from the intervention that sets a subset S of variables
to constants s. Let P∗ denote the set of all interventional
distributions Ps(V). A DAG G is said to be a causal Bayesian
network compatible with P∗ iff for every Ps(V) ∈ P∗:

(i) Ps(V) is Markov relative to G
(ii) Ps(si) = 1 or all Si ∈ S whenever si is consistent

with S = s
(ii) Ps(xi ∣Pa(Xi)) = P(xi ∣Pa(Xi)) for all Xi ∉ S

whenever Pa(Xi) is consistent with S = s
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Causal Bayesian networks: example

Bayesian networks vs causal graph

Fuse

Bulb1 Bulb2

Non causal graph
Bulb1 ⊥⊥P Bulb2 ∣ Fuse

Fuse

Bulb1 Bulb2

Causal graph
Bulb1 ⊥⊥P Bulb2 ∣ Fuse

●F ∼ U{0,1}
●P(Bulb1 = 1 ∣Fuse = 1) = 1− ε1, P(Bulb1 = 0 ∣Fuse = 1) = ε1
●P(Bulb2 = 1 ∣Fuse = 1) = 1− ε2, P(Bulb2 = 0 ∣Fuse = 1) = ε2
●P(Bulb1 = 1 ∣Fuse = 0) = P(Bulb2 = 1 ∣Fuse = 0) = 0
●P(Bulb1 = 0 ∣Fuse = 0) = P(Bulb2 = 0 ∣Fuse = 0) = 1
● ε1, ε2 ∼ U[0;0.1]
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Forks, chains and v-structures

Z

X Y

Fork

Z

X

Y

Chain

Z

X Y

v-structure

Exploiting (in)dependencies in observational data

X ,Y ∼ U(−1,1) Z = 2XY + ξc , ξc ∼ N(0, 1
2
)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X

Y

Corr(X ,Y ) = 0.002

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X ∣ Z > 0.5

Y
∣Z

>
0.

5

Corr(X ;Y ∣ Z > 0.5) = 0.8
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Reading conditional independencies in graphs

What conditional independencies hold in a distribution P
compatible with a given graph G?

A

B C

D E

F

G

▸ A ⊥⊥P D ∣B
▸ E /⊥⊥P F ∣C
▸ B ⊥⊥P F ∣E?

By definition: Iprob(P) ∶= {(X ,Y ,Z), X ⊥⊥P Y ∣Z}
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d-Separation

Collider A collider is a directed graph isomorphic to X → Z ← Y .
We’ll refer to Z in a collider as the collider. If the two parent
vertices are not adjacent, the collider is a v-structure (also
called immorality)

Active and blocked paths A path is said to be blocked by a set
of vertices Z ∈ V if:
▸ it contains a chain A→ B → C or a fork A← B → C and

B ∈ Z, or
▸ it contains a collider A→ B ← C such that no descendant of

B is in Z

A path that is not blocked is active. A path is active if every triple
along the path is active, and blocked if a single triple is blocked
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d-Separation (cont’d)

d-separation Given disjoint sets X ,Y,Z ⊆ V, we say that X and
Y are d-separated by Z if every path between a node in X and
a node in Y is blocked by Z and we write X ⊥⊥G Y ∣Z. By
definition:

Id−sep(G) ∶= {X ⊥⊥G Y ∣Z ∶ X ,Y,Z disjoint sets}

If one of the above path is not blocked, we say that X and Y are
d-connected given Z

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 34



d-Separation (cont’d)

d-separation Given disjoint sets X ,Y,Z ⊆ V, we say that X and
Y are d-separated by Z if every path between a node in X and
a node in Y is blocked by Z and we write X ⊥⊥G Y ∣Z. By
definition:

Id−sep(G) ∶= {X ⊥⊥G Y ∣Z ∶ X ,Y,Z disjoint sets}

If one of the above path is not blocked, we say that X and Y are
d-connected given Z

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 34



d-Separation (cont’d)

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X ⊥⊥G Y ∣Z ⇒ X ⊥⊥P Y ∣Z in every
distribution P compatible with G

(i) Completeness If X ⊥⊥P Y ∣Z holds in all
distributions compatible with G, then X ⊥⊥G Y ∣Z

(iii) Completeness (alternate version) If X /⊥⊥G Y ∣Z,
then there exists a distribution P compatible with G
such that X /⊥⊥P Y ∣Z
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Markov equivalence

Theorem (Markov equivalence) Two DAGs G1 and G2 have the
same d-separations iff they have the same skeleton and the
same v-structures

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

▸ Skeleton is the undirected graph
with same adjacencies

▸ v-structure: collider X → Z ← Y s.t.
X and Y are not adjacent

▸ Flipping some edges may not
change d-separation
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Minimality and faithfulness

Causal Markov condition in practice (i.e. using observational
data) may be too loose. In particular, one wants to impose that
the graph does not contain dependencies not present in the
observational data

Minimality condition A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is
not compatible with any proper subgraph of G

May not be sufficient to rule out special cases when the
probability distribution leads to cancellation of some causal
relations

Faithfulness We say that a graph G and a compatible probability
distribution P are faithful to one another if all and only the
conditional independence relations true in P are entailed by the
Markov condition applied to G
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Conclusion

Bayesian networks, causal graphical models

Data Causal graph

Causal discovery

Causal reasoning
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