Introduction to causal graphical models

Charles Assaad, Emilie Devijver

Table of content

Preliminaries

Bayesian networks
Graphs and probabilities
d-separation

Causal graphs

Structural Causal Models

Conclusion

Table of content

Preliminaries

Bayesian networks

Causal graphs

Structural Causal Models

Conclusion

(conditional) Independence

Conditional independence of random variables For a distribution P, X and Y are independent conditioned on Z, noted $X \perp \!\!\!\perp_P Y \mid Z$, iff:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

or $P(X|Y, Z) = P(X|Z)$ if $P(Y, Z) > 0$

(conditional) Independence

Conditional independence of random variables For a distribution P, X and Y are independent conditioned on Z, noted $X \perp \!\!\!\perp_P Y \mid Z$, iff:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

or $P(X|Y, Z) = P(X|Z)$ if $P(Y, Z) > 0$

Properties

```
Symmetry:X \perp\!\!\!\perp_P Y \mid Z \Longrightarrow Y \perp\!\!\!\perp_P X \mid Z

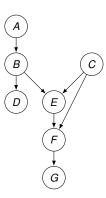
Decomposition:X \perp\!\!\!\perp_P Y, W \mid Z \Longrightarrow X \perp\!\!\!\perp_P Y \mid Z

Weak union:X \perp\!\!\!\perp_P Y, W \mid Z \Longrightarrow X \perp\!\!\!\perp_P Y \mid Z, W

Contraction:X \perp\!\!\!\perp_P Y \mid Z \& X \perp\!\!\!\perp_P W \mid Z, Y \Longrightarrow X \perp\!\!\!\perp_P Y, W \mid Z

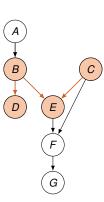
Intersection:X \perp\!\!\!\perp_P W \mid Z, Y \& X \perp\!\!\!\perp_P Y \mid Z, W \Longrightarrow X \perp\!\!\!\perp_P Y, W \mid Z
```

Consider the following graph G = (V, E):



Consider the following graph G = (V, E):

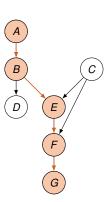
Path:
$$D \leftarrow B \rightarrow E \leftarrow C$$



Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

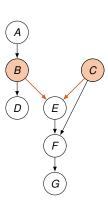


Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$



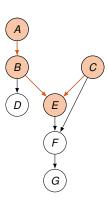
Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$



Consider the following graph G = (V, E):

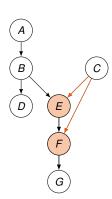
Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$

Children: $Ch(C) = \{E, F\}$



Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

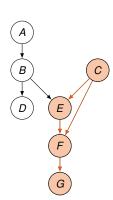
Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$

Children: $Ch(C) = \{E, F\}$

Descendants: $De(C) = \{C, E, F, G\}$



Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

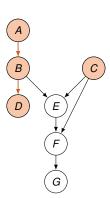
Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$

Children: $Ch(C) = \{E, F\}$

Descendants: $De(C) = \{C, E, F, G\}$

Non-descendants: $Nd(E) = \{A, B, C, D\}$



Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$

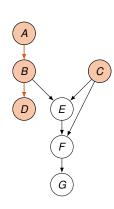
Children: $Ch(C) = \{E, F\}$

Descendants: $De(C) = \{C, E, F, G\}$

Non-descendants: $Nd(E) = \{A, B, C, D\}$

Ancestral sets: a subset of nodes S is ancestral (or upward-closed) if $\forall S \in \mathbb{R}^{N}$

S, $An(S) \subseteq S$



Consider the following graph G = (V, E):

Path: $D \leftarrow B \rightarrow E \leftarrow C$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$

Parents: $Pa(E) = \{B, C\}$

Ancestors: $An(E) = \{A, B, C, E\}$

Children: $Ch(C) = \{E, F\}$

Descendants: $De(C) = \{C, E, F, G\}$

Non-descendants: $Nd(E) = \{A, B, C, D\}$

Ancestral sets: a subset of nodes \mathcal{S} is ancestral (or upward-closed) if $\forall \mathcal{S}$ ϵ

S, $An(S) \subseteq S$

Induced subgraph $\mathcal{G}[S]$: $\mathcal{G}[\{B, C, D, F\}]$

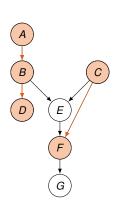


Table of content

Preliminaries

Bayesian networks
Graphs and probabilities

d-separation

Causal graphs

Structural Causal Models

Conclusion

Bayesian networks and compatibility

Compatibility We say that a distribution P(V) is compatible with (or Markov relative to) a DAG $\mathcal{G} = (V, \mathcal{E})$ if $P(V) = \prod_{X \in V} P(X | Pa(X))$.

Bayesian networks and compatibility

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X))$.

Bayesian network A DAG (directed acyclic graph) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a Bayesian network *iff* there exists a joint distribution $P(\mathcal{V})$ that is compatible with \mathcal{G} .

Bayesian networks and compatibility

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X))$.

Bayesian network A DAG (directed acyclic graph) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a Bayesian network *iff* there exists a joint distribution $P(\mathcal{V})$ that is compatible with \mathcal{G} .

Decomposing with respect to ancestral sets If P is compatible with \mathcal{G} and $\mathcal{S} \subseteq \mathcal{V}$ is an ancestral set, then $P(\mathcal{S})$ is compatible with $\mathcal{G}[\mathcal{S}]$ (i.e., $P(\mathcal{S}) = \prod_{\mathcal{S} \in \mathcal{S}} P(\mathcal{S} | Pa(\mathcal{S}))$) and $P(\mathcal{V} \setminus \mathcal{S} | \mathcal{S})$ is compatible with $\mathcal{G}[\mathcal{V} \setminus \mathcal{S}]$ (proof on board)

Testing compatibility

Proposition (Ordered Markov condition) P is compatible with \mathcal{G} iff in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

$$X_i \perp \!\!\!\perp X_1, \cdots, X_{i-1} \mid Pa(X_i)$$
 for $i = 1, \cdots, n$

(proof on board)

Testing compatibility

Proposition (Ordered Markov condition) P is compatible with \mathcal{G} iff in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

$$X_i \perp \perp X_1, \dots, X_{i-1} \mid Pa(X_i)$$
 for $i = 1, \dots, n$

(proof on board)

Proposition (Parental Markov condition (also known as local Markov condition)) P is compatible with \mathcal{G} iff $\forall X \in \mathcal{V}$ we have that

$$X \perp \!\!\!\perp Nd(X) \mid Pa(X)$$

(proof on board)

Testing compatibility

Proposition (Ordered Markov condition) P is compatible with \mathcal{G} iff in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

$$X_i \perp \perp X_1, \dots, X_{i-1} \mid Pa(X_i)$$
 for $i = 1, \dots, n$

(proof on board)

Proposition (Parental Markov condition (also known as local Markov condition)) P is compatible with \mathcal{G} iff $\forall X \in \mathcal{V}$ we have that

$$X \perp \!\!\!\perp Nd(X) \mid Pa(X)$$

(proof on board)

Proposition (Conditioning on common ancestors) For disjoint $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, if $An(\mathcal{X}) \cap An(\mathcal{Y}) \subseteq \mathcal{Z}$ and $An(\mathcal{Z}) \subseteq (\mathcal{Z})$, then $P(\mathcal{X}, \mathcal{Y} | \mathcal{Z}) = P(\mathcal{X} | \mathcal{Z})P(\mathcal{Y} | \mathcal{Z})$ (i.e., $\mathcal{X} \perp \!\!\!\perp_P \mathcal{Y} | \mathcal{Z})$

in any distribution P compatible with \mathcal{G} (proof on board)

Table of content

Preliminaries

Bayesian networks

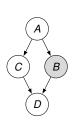
Graphs and probabilities d-separation

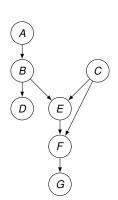
Causal graphs

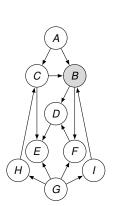
Structural Causal Models

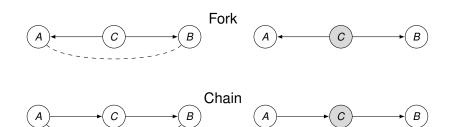
Conclusion

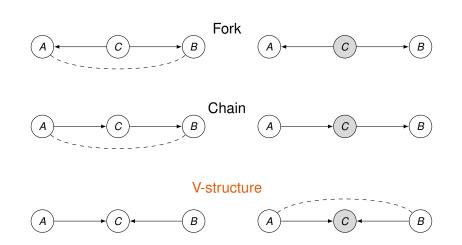
Reading conditional independencies in graphs

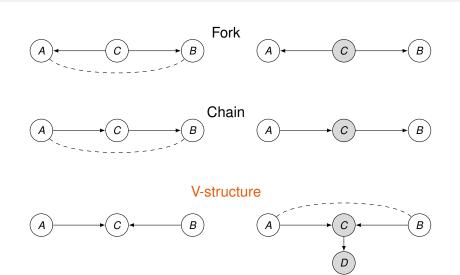


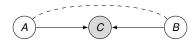


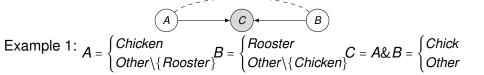












Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \end{cases}$$
If $C = Chick \implies A = Chicken$ and $C = Ch$

Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \end{cases}$$
If $C = Chick \implies A = Chicken \text{ and } B = Rooster$

$$A = Chicken \text{ and } B = Other$$
If $C = Other \implies \begin{cases} A = Chicken \text{ and } B = Rooster \\ A = Other \text{ and } B = Rooster \\ A = Other \text{ and } B = Other \end{cases}$

Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \end{cases}$$

If $C = Chick \implies A = Chicken$ and $B = Rooster$
 $A = Chicken$ and $B = Other$

If $C = Other \implies \begin{cases} A = Other \text{ and } B = Rooster \\ A = Other \text{ and } B = Other \end{cases}$

Example 2: $A, B \sim U(-1, 1)$ $\mathcal{E}_{C} \sim N(0, \frac{1}{2})$ $C = 2AB + \mathcal{E}_{C}$

Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \end{cases}$$

If $C = Chick \implies A = Chicken$ and $B = Rooster$

$$\begin{cases} A = Chicken \text{ and } B = Other \\ A = Other \text{ and } B = Rooster \end{cases}$$

$$A = Other \text{ and } B = Other$$
Example 2: $A, B \sim U(-1, 1)$

$$\zeta_c \sim N(0, \frac{1}{2}) \qquad C = 2AB + \zeta_c$$

$$Corr(A; B) = 0.002$$

Assaad, Devijver Introduction 12 / 36

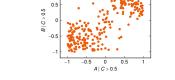
Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \end{cases}$$
If $C = Chick \implies A = Chicken$ and $B = Rooster$

$$\begin{cases} A = Chicken \text{ and } B = Other \\ A = Other \text{ and } B = Rooster \end{cases}$$

$$\begin{cases} A = Other \text{ and } B = Rooster \\ A = Other \text{ and } B = Other \end{cases}$$
Example 2: $A, B \sim U(-1, 1)$ $\xi_c \sim N(0, \frac{1}{2})$ $C = 2AB + \xi_c$

$$Corr(A; B) = 0.002$$

-0.5



 $Corr(A; B \mid C > 0.5) = 0.8$

Collider¹ A triple such that $X \to Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called unshielded collider or immorality)

¹We also refer to Z as the collider

Collider¹ A triple such that $X \to Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be blocked by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- ▶ it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

¹We also refer to Z as the collider

Collider¹ A triple such that $X \to Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be blocked by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is active.

¹We also refer to Z as the collider

Collider¹ A triple such that $X \to Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be blocked by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- ▶ it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is <u>active</u>. A path is active if every triple along the path is active, and blocked if a single triple is blocked

¹We also refer to Z as the collider

d-separation

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

d-separation

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

d-separation

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp\!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

If one of the above path is not blocked, we say that $\mathcal X$ and $\mathcal Y$ are d-connected given $\mathcal Z$

d-separation and conditional independence

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

- (i) Soundness $\mathcal{X} \perp \!\!\!\perp_{G} \mathcal{Y} \mid \mathcal{Z} \Rightarrow \mathcal{X} \perp \!\!\!\perp_{P} \mathcal{Y} \mid \mathcal{Z}$ in every distribution P compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not\perp_{\mathcal{G}} \mathcal{Y} | \mathcal{Z}$, then there exists a distribution P compatible with \mathcal{G} such that $\mathcal{X} \not\perp_{P} \mathcal{Y} | \mathcal{Z}$

Proof in (Pearl, 1988)

d-separation and conditional independence

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

- (i) Soundness $\mathcal{X} \perp\!\!\!\perp_G \mathcal{Y} \mid \mathcal{Z} \Rightarrow \mathcal{X} \perp\!\!\!\perp_P \mathcal{Y} \mid \mathcal{Z}$ in every distribution P compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not\perp_{\mathcal{G}} \mathcal{Y} | \mathcal{Z}$, then there exists a distribution P compatible with \mathcal{G} such that $\mathcal{X} \not\perp_{P} \mathcal{Y} | \mathcal{Z}$

Proof in (Pearl, 1988)

d-separation and conditional independence

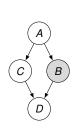
d-separation characterizes the conditional independencies of distributions compatible with a given DAG

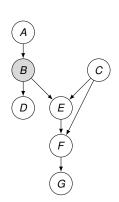
Theorem (probabilistic implications of d-separation)

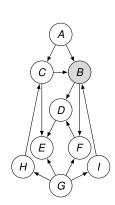
- (i) Soundness $\mathcal{X} \perp\!\!\!\perp_{G} \mathcal{Y} \mid \mathcal{Z} \Rightarrow \mathcal{X} \perp\!\!\!\perp_{P} \mathcal{Y} \mid \mathcal{Z}$ in every distribution P compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$, then there exists a distribution P compatible with \mathcal{G} such that $\mathcal{X} \not\perp_{P} \mathcal{Y} \mid \mathcal{Z}$

Proof in (Pearl, 1988)

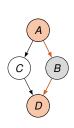
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$

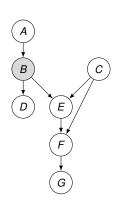


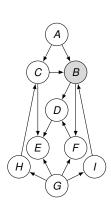




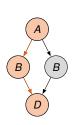
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$

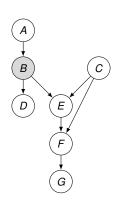


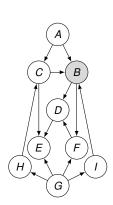




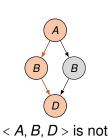
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$





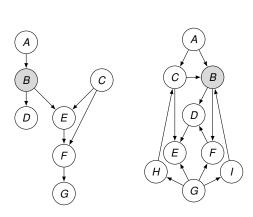


$$A \stackrel{?}{\perp}_{P} D \mid B$$

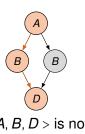


$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$

blocked

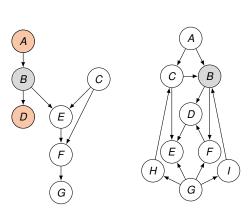


$$A \stackrel{?}{\perp}_{P} D \mid B$$

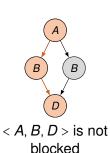


< A, B, D > is not blocked

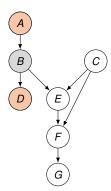
$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



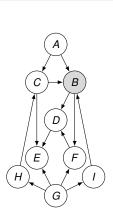
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



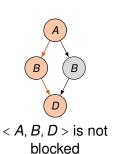
$$\Longrightarrow A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



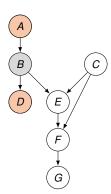
$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$



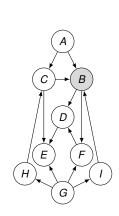
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



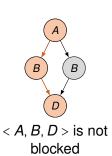
$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



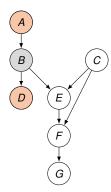
$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$



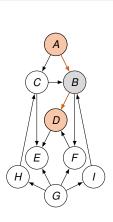
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



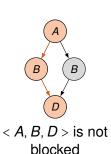
$$\implies A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



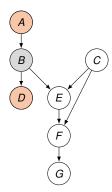
$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$



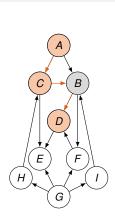
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



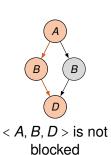
$$\implies A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



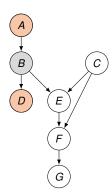
$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$



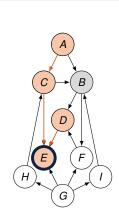
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



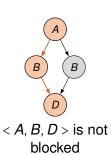
$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



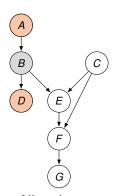
$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$

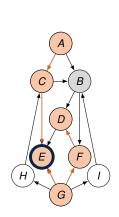


$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$

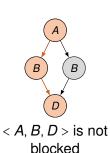


$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$

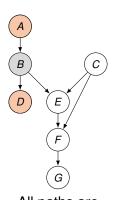




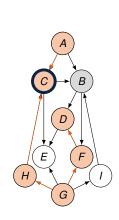
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



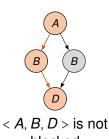
$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$

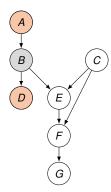


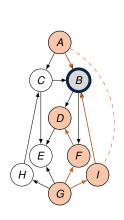
$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$



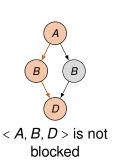
blocked

$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$

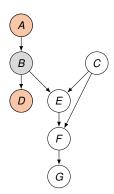




$$A \stackrel{?}{\perp \!\!\! \perp}_{\mathcal{P}} D \mid B$$

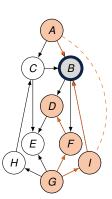


$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



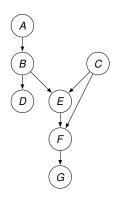
All paths are blocked

$$\implies A \perp \!\!\!\perp_{\mathcal{P}} D \mid B$$

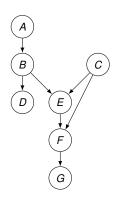


< *A*, *I*, *G*, *F*, *D* > is not blocked

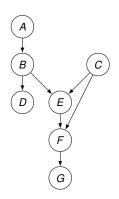
$$\implies A \stackrel{?}{\perp}_{\mathcal{P}} D \mid B$$



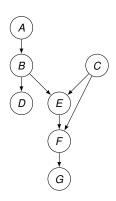
- $\triangleright B \perp \!\!\!\perp_P G \mid F?$
- $\triangleright A \perp \!\!\!\perp_P F \mid C, E?$
- $\triangleright B \perp \!\!\!\perp_P E \mid F?$



- B ⊥⊥_P G | F?
- \triangleright $A \perp \!\!\!\perp_P F \mid C, E$?
- $\triangleright B \perp \!\!\!\perp_P E \mid F?$



- ▶ $B \perp \!\!\!\perp_P G | F$?
- \triangleright $A \perp \!\!\!\perp_P F \mid C, E$?
- \triangleright $B \coprod_{P} E | F?$



- ▶ $B \perp \!\!\!\perp_P G | F$?
- ▶ $A \perp \!\!\!\perp_P F \mid C, E$?
- B ⊥⊥_P E | F?

Table of content

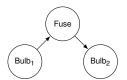
Preliminaries

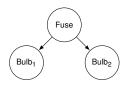
Bayesian networks
Graphs and probabilities
d-separation

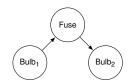
Causal graphs

Structural Causal Models

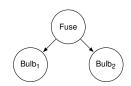
Conclusion



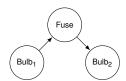




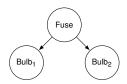
Bulb₁ $\perp \!\!\! \perp_P$ Bulb₂ | Fuse Bayesian network



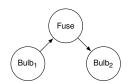
Bulb₁ \coprod_P Bulb₂ | Fuse Bayesian network



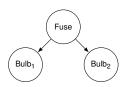
Bulb₁ ⊥⊥_P Bulb₂ | Fuse Bayesian network Not a causal graph



Bulb₁ \coprod_P Bulb₂ | Fuse Bayesian network Causal graph



Oracle for conditional independence



Bulb₁ \coprod_P Bulb₂ | Fuse Bayesian network Causal graph

Oracle for intervention

Conditioning vs Intervening (1/2)

Population

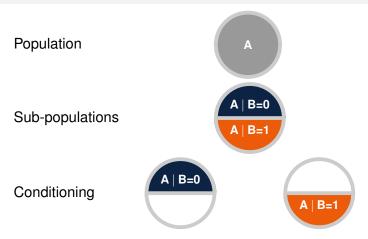
Conditioning vs Intervening (1/2)

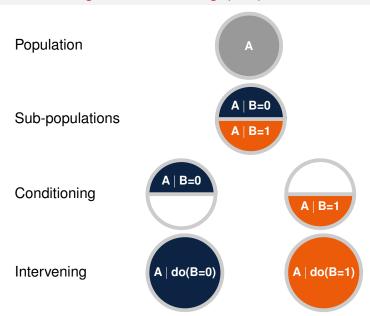
Population

A

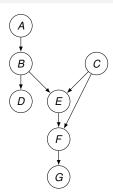
Sub-populations

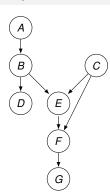
Conditioning vs Intervening (1/2)

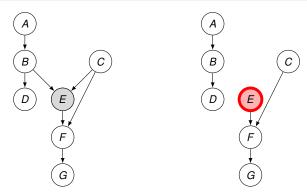




Assaad, Devijver Introduction 20 / 36

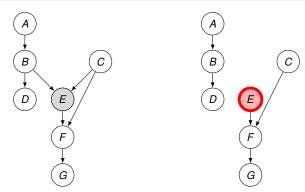






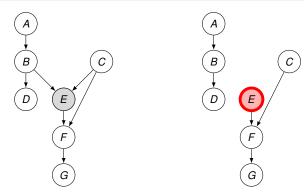
Note that there are two types of interventions:

- Structural (or hard) intervention
- Parametric (or soft) intervention



Note that there are two types of interventions:

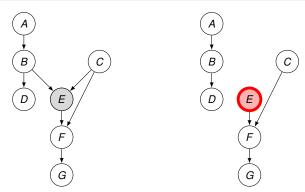
- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

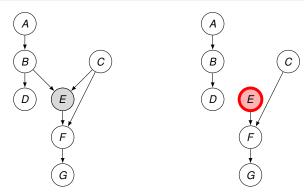
The operator *do()* is a way to denote (hard) interventions



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions For example $P(a, b, c, d, f, g \mid do(e))$



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions For example $P(a, b, c, d, f, g \mid do(e))$ or $P_{E=e}(a, b, c, d, f, g)$

From association to causation (1/2)

Reminder: parental Markov condition

$$\forall X \in \mathcal{V}, \qquad X \perp \!\!\!\perp Nd(X) \mid Pa(X)$$

From association to causation (1/2)

Reminder: parental Markov condition

$$\forall X \in \mathcal{V}, \qquad X \perp \!\!\!\perp Nd(X) \mid Pa(X)$$

Causal Markov condition

$$\forall X \in \mathcal{V}, \qquad X \perp \perp NotEffects(X) \mid DirectCauses(X)$$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

$$Pr(\mathbf{V}_1 = \mathbf{v}_1, \dots, \mathbf{V}_d = \mathbf{v}_d) = \prod_i Pr(\mathbf{V}_i = \mathbf{v}_i \mid Pa(\mathbf{V}_i))$$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

$$Pr(\mathbf{V}_1 = \mathbf{v}_1, \dots, \mathbf{V}_d = \mathbf{v}_d) = \prod_i Pr(\mathbf{V}_i = \mathbf{v}_i \mid Pa(\mathbf{V}_i))$$

Truncated factorization (also known as the manipulation theorem) If we intervene on a subset $S \subset V$, then

$$\mathsf{Pr}_{\{S=s\}}\big(\mathbf{V}_1 = \mathbf{v}_1, \cdots, \mathbf{V}_d = \mathbf{v}_d\big) = \prod_{i \notin S} \mathsf{Pr}\big(\mathbf{V}_i \mid \mathit{Pa}(\mathbf{V}_i)\big)$$

if $\mathbf{v}_1, \dots, \mathbf{v}_d$ are values consistant with the intervention, else,

$$Pr_{\{S=s\}}(\boldsymbol{V}_1=\boldsymbol{v}_1,\cdots,\boldsymbol{V}_d=\boldsymbol{v}_d)=0$$

Causal Bayesian networks

Causal Bayesian network Let $P(\mathcal{V})$ be a probability distribution and let $P(\mathcal{V} \mid do(s))$ denote the distribution resulting from the intervention that sets a subset \mathcal{S} of variables to constants s. Let \mathcal{P}_* denote the set of all interventional distributions $P(\mathcal{V} \mid do(s))$. A DAG \mathcal{G} is said to be a <u>causal Bayesian network</u> compatible with \mathcal{P}_* iff \mathcal{G} and \mathcal{P}_* satisfy the truncated factorization.

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- ► How?

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- ► How?

Causal reasoning:

- Given a causal graph, is it possible to estimate the effect of an intervention from observational data?
- ► How?

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- ► How?

Causal reasoning:

- Given a causal graph, is it possible to estimate the effect of an intervention from observational data?
- ► How?

Identifiability: The causal effect of an intervention do(x) on a set of variables Y such that $Y \cap X = \emptyset$ is said to be identifiable from P in \mathcal{G} if $P(Y \mid do(x))$ is uniquely computable from $P(\mathcal{V})$.

Table of content

Preliminaries

Bayesian networks
Graphs and probabilities
d-separation

Causal graphs

Structural Causal Models

Conclusion

Linear structural causal model It consists on a set of structural equations of the form:

$$y := \sum_{x \in Pa(y)} \beta_{xy} x + \xi_y$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Linear structural causal model It consists on a set of structural equations of the form:

$$y\coloneqq \sum_{x\in Pa(y)}\beta_{xy}x+\xi_y$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients: Suppose the following linear structural causal model.

$$M: \begin{cases} a := \xi_a \\ b := \beta_{ab}a + \xi_b \\ c := \beta_{ac}a + \xi_c \end{cases}$$

Linear structural causal model It consists on a set of structural equations of the form:

$$y \coloneqq \sum_{x \in Pa(y)} \beta_{xy} x + \xi_y$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients:

Suppose the following linear structural causal model. What is the regression coefficient when we regress *c* on *b*?

$$M: \begin{cases} a := \xi_a \\ b := \beta_{ab}a + \xi_b \\ c := \beta_{ac}a + \xi_c \end{cases}$$

Linear structural causal model It consists on a set of structural equations of the form:

$$y := \sum_{x \in Pa(y)} \beta_{xy} x + \xi_y$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> <u>coefficient</u> represents the strength of the causal relation.

Differences between regression and causal coefficients:

Suppose the following linear structural causal model. What is the regression coefficient when we regress c on b?

$$M: \begin{cases} a := \xi_{a} & b = \hat{\beta}_{cb}c + \xi_{b} \\ b := \xi_{ab}a + \xi_{b} \\ c := \beta_{ac}a + \xi_{c} \end{cases} \qquad \hat{\beta}_{cb} = \frac{b - \xi_{b}}{\beta_{ac}a + \xi_{c}}$$

Linear structural causal model It consists on a set of structural equations of the form:

$$y \coloneqq \sum_{x \in Pa(y)} \beta_{xy} x + \xi_y$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients:

Suppose the following linear structural causal model. What is the regression coefficient when we regress *c* on *b*?

$$M: \begin{cases} a := \xi_{a} & = \hat{\beta}_{cb}c + \xi_{b} \\ b := \beta_{ab}a + \xi_{b} \\ c := \beta_{ac}a + \xi_{c} \end{cases} \qquad \hat{\beta}_{cb} = \frac{b - \xi_{b}}{\beta_{ac}a + \xi_{c}} \neq 0$$

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $V = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $V = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i (1 $\leq i \leq n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $V = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i (1 $\leq i \leq n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $V = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i (1 $\leq i \leq n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $V = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i (1 $\leq i \leq n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

- 1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model
- 2. $P(\mathcal{U})$ is a joint distribution over \mathcal{U}

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. $\mathcal U$ is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i (1 $\leq i \leq n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

- 1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model
- 2. $P(\mathcal{U})$ is a joint distribution over \mathcal{U}

 $P(\mathcal{U})$ and \mathcal{F} induce a joint distribution $P(\mathcal{V})$ over \mathcal{V} .

Induced graph

Induced graph The graph $\mathcal G$ induced by a structural causal model M has vertices $\mathcal V$ and an edge $X_i \to X_j$ whenever f_j depends on X_i . In addition, $\mathcal G$ contains a bidirected edge, denoted $X_i \longleftrightarrow X_j$, whenever f_i and f_j depend on a common subset of $\mathcal U$

Induced graph

Induced graph The graph $\mathcal G$ induced by a structural causal model M has vertices $\mathcal V$ and an edge $X_i \to X_j$ whenever f_j depends on X_i . In addition, $\mathcal G$ contains a bidirected edge, denoted $X_i \longleftrightarrow X_j$, whenever f_i and f_j depend on a common subset of $\mathcal U$.

Markovian causal model A causal model M is <u>Markovian</u> if the graph induced by M contains no bidirected edges (the graph is a DAG)

Induced graph

Induced graph The graph $\mathcal G$ induced by a structural causal model M has vertices $\mathcal V$ and an edge $X_i \to X_j$ whenever f_j depends on X_i . In addition, $\mathcal G$ contains a bidirected edge, denoted $X_i \longleftrightarrow X_j$, whenever f_i and f_j depend on a common subset of $\mathcal U$.

Markovian causal model A causal model M is <u>Markovian</u> if the graph induced by M contains no bidirected edges (the graph is a DAG)

Semi-Markovian causal model A causal model M is Semi-Markovian if the graph induced by M contains bidirected edges (the graph is a ADMG)

$P(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V} \cup \mathcal{U}) = \prod_{i=1}^{n} P(x_{i} | Pa(x_{i}), u_{i}) P(u_{i})$$

$$\sum_{u} P(\mathcal{V} \cup \mathcal{U}) = \sum_{u} \prod_{i=1}^{n} P(x_{i} | x_{1}, ..., x_{i-1}, u_{i}) P(u_{i})$$

$$P(\mathcal{V}) = \sum_{u} \prod_{i=1}^{n} \frac{P(x_{i}, u_{i} | x_{1}, ..., x_{i-1})}{P(u_{i})} P(u_{i})$$

$$= \prod_{i=1}^{n} P(x_{i} | x_{1}, ..., x_{i-1})$$

Induced distribution in Markovian models

 $P(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V} \cup \mathcal{U}) = \prod_{i=1}^{n} P(x_{i} | Pa(x_{i}), u_{i}) P(u_{i})$$

$$\sum_{u} P(\mathcal{V} \cup \mathcal{U}) = \sum_{u} \prod_{i=1}^{n} P(x_{i} | x_{1}, ..., x_{i-1}, u_{i}) P(u_{i})$$

$$P(\mathcal{V}) = \sum_{u} \prod_{i=1}^{n} \frac{P(x_{i}, u_{i} | x_{1}, ..., x_{i-1})}{P(u_{i})} P(u_{i})$$

$$= \prod_{i=1}^{n} P(x_{i} | x_{1}, ..., x_{i-1})$$

$$M := f_a(\xi_a)$$

$$B := f_b(A, H, \xi_b)$$

$$C := f_c(A, B, I, \xi_c)$$

$$D := f_d(C, F, \xi_d)$$

$$E := f_e(B, G, \xi_e)$$

$$F := f_f(C, G, \xi_f)$$

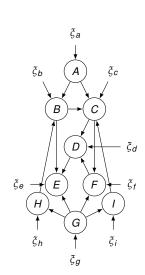
$$G := f_g(\xi_g)$$

$$H := f_h(G, \xi_h)$$

$$I := f_i(G, \xi_i)$$

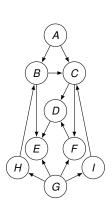
Example of a Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$



Example of a Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$



$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \end{cases}$$

$$E := f_e(B, G, \xi_e)$$

$$F := f_f(C, G, \xi_f)$$

$$G := f_g(\xi_g)$$

$$H := f_h(G, \xi_h)$$

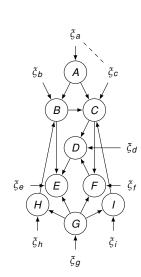
$$I := f_i(G, \xi_i)$$

$$\xi_a \not \perp \xi_c$$

Example of a semi-Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$

$$\xi_a \not \perp \xi_c$$



Example of a semi-Markovian model

$$M := f_a(\xi_a)$$

$$B := f_b(A, H, \xi_b)$$

$$C := f_c(A, B, I, \xi_c)$$

$$D := f_d(C, F, \xi_d)$$

$$E := f_e(B, G, \xi_e)$$

$$F := f_f(C, G, \xi_f)$$

$$G := f_g(\xi_g)$$

$$H := f_h(G, \xi_h)$$

$$I := f_i(G, \xi_i)$$

$$\xi_a \not \perp \xi_c$$

SCM

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \end{cases}$$

$$E := f_e(B, G, \xi_e)$$

$$F := f_f(C, G, \xi_f)$$

$$G := f_g(\xi_g)$$

$$H := f_h(G, \xi_h)$$

$$I := f_i(G, \xi_i)$$

SCM

$$A := f_a(\xi_a)$$

$$B := f_b(A, H, \xi_b)$$

$$C := f_c(A, B, I, \xi_b)$$

$$D := f_d(C, F, \xi_d)$$

$$E := f_e(B, G, \xi_e)$$

$$F := f_f(C, G, \xi_f)$$

$$G := f_g(\xi_g)$$

$$H := f_h(G, \xi_h)$$

$$I := f_i(G, \xi_i)$$

Interventional SCM

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases} \qquad M_c: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := c \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$

Table of content

Preliminaries

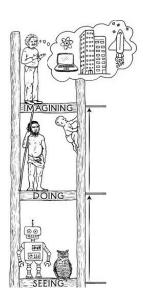
Bayesian networks
Graphs and probabilities
d-separation

Causal graphs

Structural Causal Models

Conclusion

Conclusion



SCMs

Causal graphs

Bayesian networks

References

- An Introduction to Causal Graphical Models, S. Gordon (slides available at https://simons.berkeley.edu/sites/default/files/docs/18989/cau22bcspencergordon.pdf)
- An Introduction to Causal Graphical Models, V. Kumar, A. Capiln, C. Park, S. Gordon, L. Schulman (handout available at https://tinyurl.com/causalitybootcamp)
- Causality, J. Pearl. Cambridge University Press, 2nd edition, 2009
- Probabilistic Reasoning in Intelligent Systems, J. Pearl. The Morgan Kaufmann Series in Representation and Reasoning, 1988