Causal discovery: noise-based methods

Charles Assaad, Emilie Devijver

charles.assaad@ens-lyon.fr

Table of content

Preliminaries

Bivariate causal discovery

Multivariate causal discovery

Conclusion

Table of content

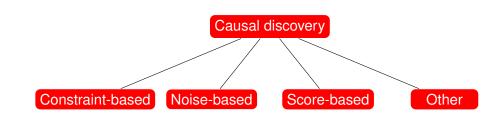
Preliminaries

Bivariate causal discovery

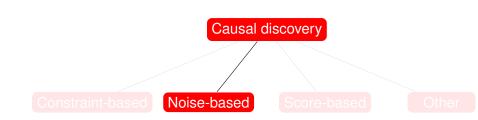
Multivariate causal discovery

Conclusion

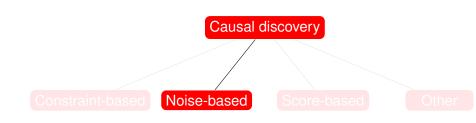
Causal discovery



Causal discovery



Causal discovery



Noise-based: find footprints in the noise that imply causal asymmetry.

Recap about causal graphical models

Causal sufficiency

$$\forall X \leftarrow Z \rightarrow Y$$
, if $X, Y \in \mathcal{V}$ then $Z \in \mathcal{V}$.

Topological ordering: Consider a causal DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a topological ordering $\mathcal{T} = \{X_1, \dots, X_p\}$. If $X_i \to X_j$ in \mathcal{G} then i < j.

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Given P(X, Y), one can detect X - Y but what about orientation?

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Given P(X, Y), one can detect X - Y but what about orientation?

$$Y := 2X + \xi_y ?$$

or
$$X := \frac{Y}{2} + \hat{\xi}_X$$
?

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Given P(X, Y), one can detect X - Y but what about orientation?

$$Y := 2X + \xi_y$$
 ?

or
$$X := \frac{Y}{2} + \hat{\xi}_X$$
?

Without further assumption we cannot know.

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Given P(X, Y), one can detect X - Y but what about orientation?

$$Y := 2X + \xi_y$$
 ?

Without further assumption we cannot know.

or
$$X := \frac{Y}{2} + \hat{\xi}_X$$
?

Assume that the noise follow a uniform distribution on $\{-1, 0, 1\}$

Suppose
$$\begin{cases} X := \xi_X \\ Y := 2X + \xi_Y \end{cases}$$

Given P(X, Y), one can detect X - Y but what about orientation?

$$Y := 2X + \xi_y$$
 ?

Without further assumption we cannot know.

or
$$X := \frac{Y}{2} + \hat{\xi}_X$$
?

Assume that the noise follow a uniform distribution on $\{-1, 0, 1\}$

$$\begin{array}{c|ccccc} X & Y & \xi_y = Y - 2X & \hat{\xi}_x = X - Y/2 \\ \hline 1 & 2 & 0 \in \{-1, 0, 1\} & 0 \in \{-1, 0, 1\} \\ 3 & 6 & 0 \in \{-1, 0, 1\} & 0 \in \{-1, 0, 1\} \\ 4 & 9 & 1 \in \{-1, 0, 1\} & -0.5 \notin \{-1, 0, 1\} \\ \end{array}$$

$$\begin{array}{cccc}
\xi_X & \xi_Y \\
\downarrow & \downarrow \\
X & Y
\end{array}$$

$$M_{1}: \begin{cases} X := f_{X}(\xi_{X}) \\ Y := f_{Y}(X, \xi_{Y}) \end{cases} \qquad \begin{array}{c} X \coprod_{G} \xi_{Y} \\ Y \not\perp_{G} \xi_{X} \end{array}$$

Backwards model:

$$M_2: \begin{cases} Y := g_y(\xi_y) \\ X := g_x(Y, \xi_x) \end{cases} \rightarrow X \not\perp_G \xi_y \\ Y \perp_G \xi_x$$

$$\rightarrow X \not\perp_G \xi_{J}$$

Main question: Given P(V) a compatible probability distribution of \mathcal{G} , can we discover \mathcal{G} ?

Main question: Given P(V) a compatible probability distribution of \mathcal{G} , can we discover \mathcal{G} ? No!

Main question: Given $P(\mathcal{V})$ a compatible probability distribution of \mathcal{G} , can we discover \mathcal{G} ? No! It is possible that $Y \perp \!\!\!\perp_P \hat{\zeta}_x$.

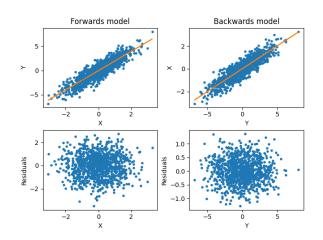
Main question: Given $P(\mathcal{V})$ a compatible probability distribution of \mathcal{G} , can we discover \mathcal{G} ? No! It is possible that $Y \perp \!\!\!\perp_P \hat{\xi}_x$.

Example:

$$X \sim N(0,1)$$

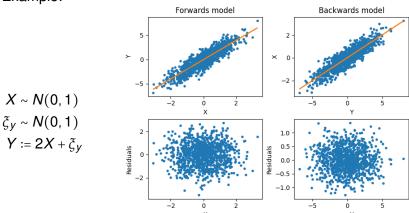
$$\xi_y \sim N(0,1)$$

$$Y := 2X + \xi_y$$



Main question: Given $P(\mathcal{V})$ a compatible probability distribution of \mathcal{G} , can we discover \mathcal{G} ? No! It is possible that $Y \perp \!\!\!\perp_P \hat{\mathcal{E}}_x$.

Example:



⇒ The Markov equivalence class is the best we can do!

Table of content

Preliminaries

Bivariate causal discovery

Multivariate causal discovery

Conclusion

The linear case (1/2)

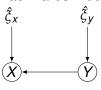
$$\begin{array}{cccc}
\xi_x & \xi_y \\
\downarrow & \downarrow \\
X & Y
\end{array}$$

$$M_1: \begin{cases} X := \xi_X \\ Y := aX + \xi_y \end{cases} \qquad \begin{array}{c} X \perp \!\!\! \perp_G \xi_Y \\ Y \not\perp \!\!\! \perp_G \xi_X \end{cases}$$

$$Y \not\perp_G \xi_x$$

When $Y \coprod_P \hat{\xi}_x$?

Backwards model:



$$M_2: \begin{cases} Y := \hat{\xi}_y \\ X := bY + \hat{\xi}_x \end{cases}$$

$$M_2: \begin{cases} Y := \hat{\xi}_y \\ X := bY + \hat{\xi}_X \end{cases} = \begin{cases} \hat{\xi}_X = X - bY \\ = X - b(aX + \xi_y) \\ = (1 - ba)X - b\xi_y \end{cases}$$

The linear case (2/2)

$$Y = aX + \xi_y$$

$$\hat{\xi}_X = (1 - ba)X - b\xi_y$$

When $Y \perp \!\!\!\perp_P \hat{\xi}_x$?

The linear case (2/2)

$$Y = aX + \xi_y$$

$$\hat{\xi}_X = (1 - ba)X - b\xi_y$$

When $Y \perp \!\!\!\perp_P \hat{\xi}_X$?

Theorem (Darmois-Skitovich): Let X_1, \dots, X_n be independent, non degenerate random variables. If for two linear combinations:

$$I_1 = a_1 X_1 + \dots + a_n X_n$$

 $I_2 = b_1 X_1 + \dots + b_n X_n$

are independent, then each X_i is normally distributed.

The linear non gaussian case (1/2)

Theorem (identiability of linear non-Gaussian models): Assume that P(X, Y) admits the linear model

$$Y := aX + \xi_V, \qquad X \perp \!\!\!\perp_P \xi_V,$$

with continuous random variables X, ξ_y , and Y. Then there exists $b \in \mathbb{R}$ and a random variable $\hat{\xi}_x$ such that

$$X := bY + \hat{\zeta}_X, \qquad Y \perp \!\!\!\perp_P \hat{\zeta}_X,$$

if and only if ξ_y and X are Gaussian. (proof on board)

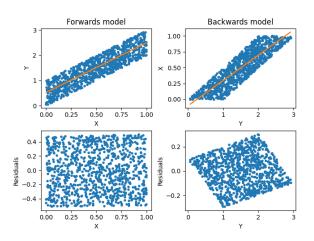
The linear non gaussian case (2/2)

Example:

$$X \sim U(0,1)$$

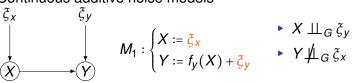
$$\xi_{y} \sim U(0,1)$$

$$Y := 2X + \xi_{y}$$



The non linear case (1/3)

Continuous additive noise models



When $Y \perp \!\!\!\perp_P \hat{\xi}_x$?

The non linear case (2/3)

Theorem (identiability of additive noise models): Assume that P(X, Y) admits the non-linear additive noise model

$$Y := f_{\gamma}(X) + \xi_{\gamma}, \qquad X \perp \!\!\!\perp_{P} \xi_{\gamma},$$

with continuous random variables X, ξ_y , and Y. Then there exists g() and random variable $\hat{\xi}_x$ such that

$$X := f_X(Y) + \hat{\xi}_X, \qquad Y \perp \!\!\!\perp_P \hat{\xi}_X,$$

if and only if *Complicated Condition* is satisfied. (Hoyer et al, 2008)

The non linear case (2/3)

Theorem (identiability of additive noise models): Assume that P(X, Y) admits the non-linear additive noise model

$$Y := f_y(X) + \xi_y, \qquad X \perp\!\!\!\perp_P \xi_y,$$

with continuous random variables X, ξ_y , and Y. Then there exists g() and random variable $\hat{\xi}_x$ such that

$$X := f_X(Y) + \hat{\xi}_X, \qquad Y \perp \!\!\!\perp_P \hat{\xi}_X,$$

if and only if *Complicated Condition* is satisfied. (Hoyer et al, 2008)

Complicated Condition: The triple $(f_y, P(X), P(\xi_y))$ solves the following differential equation for all x, y with $(\log P(\xi_y))''(y - f_y(x))f'(x) \neq 0$.

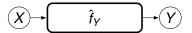
The non linear case (3/3)

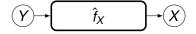
- The space that satisfy the condition is a 3-dimentional space;
 - The space of continuous distributions is infinite dimensional:
 - ⇒ we have identifiability for most distributions.
- If the noise is Gaussian, then the only functional form that satisfies Complicated Condition is linearity.
- If the function is linear and the noise is non-Gaussian, then one can't fit a linear backwards model **but** one can fit a non-linear backwards models.

Given P(X, Y) and a dependence estimator \hat{I} **Procedure:**

Given P(X, Y) and a dependence estimator \hat{I} **Procedure**:

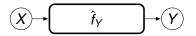
1. Fit \hat{f}_Y and \hat{f}_X :

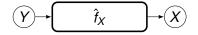




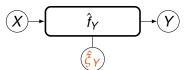
Given P(X, Y) and a dependence estimator \hat{I} **Procedure**:

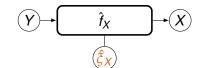
1. Fit \hat{f}_Y and \hat{f}_X :





2. Compute residuals $\hat{\xi}_Y$ and $\hat{\xi}_X$:

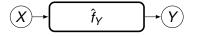


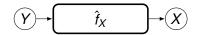


Given P(X, Y) and a dependence estimator \hat{I}

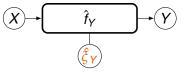
Procedure:

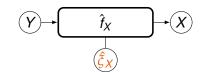
1. Fit \hat{f}_Y and \hat{f}_X :





2. Compute residuals $\hat{\xi}_Y$ and $\hat{\xi}_X$:

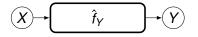


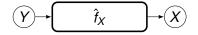


- 3. Order:
 - $\mathcal{T} = [X, Y] \text{ if } \hat{I}(x, \hat{\xi}_Y) < \hat{I}(y, \hat{\xi}_X)$
 - $T = [Y, X] \text{ if } \hat{I}(y, \hat{\xi}_X) < \hat{I}(x, \hat{\xi}_Y)$

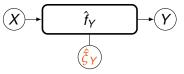
Given P(X, Y) and a dependence estimator \hat{I} **Procedure**:

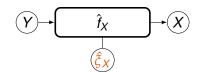
1. Fit \hat{f}_Y and \hat{f}_X :





2. Compute residuals $\hat{\xi}_Y$ and $\hat{\xi}_X$:





- 3. Order:
 - $\mathcal{T} = [X, Y] \text{ if } \hat{I}(x, \hat{\xi}_Y) < \hat{I}(y, \hat{\xi}_X)$
 - $T = [Y, X] \text{ if } \hat{l}(y, \hat{\xi}_X) < \hat{l}(x, \hat{\xi}_Y)$
- 4. Output (suppose T = [X, Y]):
 - ► $X \to Y$ if $X \perp \!\!\!\perp_P \hat{\xi}_Y$ and $Y \perp \!\!\!\!\perp_P \hat{\xi}_X$

Table of content

Preliminaries

Bivariate causal discovery

Multivariate causal discovery

Conclusion

Minimality

Minimality condition A DAG \mathcal{G} compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of \mathcal{G} .

Minimality

Minimality condition A DAG \mathcal{G} compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of \mathcal{G} .

Remark: faithfulness \implies minimality.

Minimality and d-sep

Theorem (implication of minimality on d-sep): Consider the random vector \mathcal{V} and assume that the joint distribution has a density with respect to a product measure. Suppose that $P(\mathcal{V})$ is Markov with respect to \mathcal{G} . Then $P(\mathcal{V})$ satisfies the minimality condition iff $\forall X \in \mathcal{V}$ and $\forall Y \in Parents(X, \mathcal{G})$, $X \not\perp_P Y \mid Parents(X, \mathcal{G}) \setminus \{Y\}$. (proof on board)

Violation of minimality

Example 1: canceling out

Example 2: constant functions

Linear non gaussian

Theorem (LiNGAM) Assume a linear SCM with graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a compatible distribution $P(\mathcal{V})$ such that $\forall Y \in \mathcal{V}$

$$Y := \sum_{X \in Parents(Y,\mathcal{G})} a_{xy}X + \xi_y$$

where all ξ_y are jointly independent and non-Gaussian distributed. Additionally, we require that $\forall Y \in \mathcal{V}, X \in Parents(Y, \mathcal{G}), a_{xy} \neq 0$. Then, the graph \mathcal{G} is identifiable from $P(\mathcal{V})$. (proof in (Shimizu et al, 2011))

The LiNGAM algorithm

Algorithm 1 LiNGAM

```
Input: P(\mathcal{V})
Output: G
 1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_p\}
 2: Let S = \{1, \dots, p\} and T = []
 3: repeat
 4: H = []
     for i \in S do
        for j \in S \setminus \{i\} do
 6.
         \hat{\xi}_{ij} = X_j - \frac{cov(X_i, X_j)}{var(X_i)} X_i
        end for
 8:
 9: h = \sum_{i \in S \setminus \{i\}} \hat{I}(X_i, \hat{\xi}_{ij})
10: H = [H, h]
       end for
11:
       i^* = arg \min_{i \in S} H
13: S = S \setminus \{i^*\}
14: \mathcal{T} = [\mathcal{T}, i^*]
15: \forall j \in S, X_i = \hat{\xi}_{i*i}
16: until |S| = 0
17: Append(\mathcal{T}, S_0)
18: Construct a strictly lower triangular matrix by following the order in \mathcal{T}, and estimate the connec-
     tion strengths a_{i,i} by using some conventional covariance-based regression.
19: if a_{i,i} > 0 then
20: Add X_i \rightarrow X_i to \mathcal{G}
21: end if
```

22: Return G

Additive noise models

Theorem (ANM) Assume a non-linear SCM with graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a compatible distribution $P(\mathcal{V})$ that satisfy the minimality condition with respect to \mathcal{G} . $\forall Y \in \mathcal{V}$

$$Y := f(Parents(Y, \mathcal{G})) + \xi_{Y}$$

where all ξ_{y} are jointly independent. Then, the graph \mathcal{G} is identifiable from $P(\mathcal{V})$.

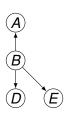
(proof in (Peters et al, 2014))

The ANM algorithm

Algorithm 2 ANM

```
Input: P(\mathcal{V})
Output: G
 1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_p\}
 2: Let S = \{1, \dots, p\} and T = []
 3: repeat
         H = []
         for i \in S do
         \hat{f}_j: Regress X^j on \{X_i\}_{i \in S\setminus\{i\}}
        \hat{\xi}_{,i} = X_i - \hat{f}_{,i}(X_i)
 7:
 8: h = \mathcal{I}(\{X_i\}_{i \in S \setminus \{i\}}, \xi_{,i})
      H = [H, h]
         end for
10:
         i^* = arg \min_{i \in S} H
11.
         S = S \setminus \{i^*\}
12:
         \mathcal{T} = [i^*, \mathcal{T}]
14: until |S| = 0
15: for j \in \{2, \dots, p\} do
         for i \in \{\mathcal{T}_1, \dots, \mathcal{T}_{i-1}\} do
16:
          \hat{f}_i: Regress X^j on \{X_k\}_{k\in\{\mathcal{T}_1,\cdots,\mathcal{T}_{i-1}\}\setminus\{i\}}
17:
          \hat{\xi}_{,i} = X_i - \hat{f}_{,i}(X_i)
18:
             if \{X_k\}_{k\in\{\mathcal{T}_1,\dots,\mathcal{T}_{i-1}\}\setminus\{i\}}\not\perp_P \xi_{,i} then
                  Add X_i \rightarrow X_i to \mathcal{G}
20:
             end if
21:
          end for
23: end for
24: Return G
```

- Suppose the true graph on right;
- Assumptions: CMC, minimality, causal sufficiency.



- ► Estimate $A, B, D \mapsto E$ and $\hat{\mathcal{E}}_{a}$
 - $H_1 = \hat{I}(\{A, B, D\}, \hat{\xi}_e)$
- Estimate $A, D, E \mapsto B$ and $\hat{\mathcal{E}}_{L}$
 - $H_3 = \hat{I}(\{A, D, E\}, \hat{\xi}_b)$

- ► Estimate $A, B, E \mapsto D$ and $\hat{\xi}_d$
 - $H_2 = \hat{I}(\{A, B, E\}, \hat{\xi}_d)$
- ► Estimate $B, D, E \mapsto A$ and $\hat{\xi}_a$
 - $H_4 = \hat{I}(\{B, D, E\}, \hat{\xi}_a)$

- ► Estimate $A, B, D \mapsto E$ and $\hat{\xi}_{e}$
 - $H_1 = \hat{I}(\{A, B, D\}, \hat{\xi}_e)$
- Estimate $A, D, E \mapsto B$ and \hat{z}_{L}
 - $H_3 = \hat{I}(\{A, D, E\}, \hat{\xi}_b)$

- ► Estimate $A, B, E \mapsto D$ and $\hat{\xi}_d$
 - $H_2 = \hat{I}(\{A, B, E\}, \hat{\xi}_d)$
- ► Estimate $B, D, E \mapsto A$ and $\hat{\xi}_a$
 - $H_4 = \hat{I}(\{B, D, E\}, \hat{\xi}_a)$

$$4 = Argmin(H)$$
$$\mathcal{T} = [A]$$

- ▶ Estimate $B, D \mapsto E$ and $\hat{\xi}_e$
 - $H_1 = \hat{I}(\{B, D\}, \hat{\xi}_e)$
- ▶ Estimate $D, E \mapsto B$ and $\hat{\xi}_b$
 - $H_3 = \hat{I}(\{D, E\}, \hat{\xi}_b)$

- ▶ Estimate $B, E \mapsto D$ and $\hat{\xi}_d$
 - $H_2 = \hat{I}(\{B, E\}, \hat{\xi}_d)$

- ▶ Estimate $B, D \mapsto E$ and $\hat{\xi}_e$
- ▶ Estimate $B, E \mapsto D$ and $\hat{\xi}_d$

•
$$H_1 = \hat{I}(\{B, D\}, \hat{\xi}_e)$$

•
$$H_2 = \hat{I}(\{B, E\}, \hat{\xi}_d)$$

- ▶ Estimate $D, E \mapsto B$ and $\hat{\xi}_b$
 - ► $H_3 = \hat{I}(\{D, E\}, \hat{\xi}_b)$ 1 = Argmin(H) $\mathcal{T} = [E, A]$

- ▶ Estimate $B, D \mapsto E$ and $\hat{\xi}_e$
- ▶ Estimate $B, E \mapsto D$ and $\hat{\xi}_d$

•
$$H_1 = \hat{I}(\{B, D\}, \hat{\xi}_e)$$

►
$$H_2 = \hat{I}(\{B, E\}, \hat{\xi}_d)$$

- ▶ Estimate $D, E \mapsto B$ and $\hat{\xi}_b$
 - $H_3 = \hat{I}(\{D, E\}, \hat{\xi}_b)$ 1 = Argmin(H) $\mathcal{T} = [E, A]$
- ► Estimate $D \mapsto B$ and $\hat{\xi}_b$
 - $H_1 = \hat{I}(D, \hat{\xi}_b)$

► Estimate $B \mapsto D$ and $\hat{\xi}_d$ ► $H_2 = \hat{I}(B, \hat{\xi}_d)$

- ▶ Estimate $B, D \mapsto E$ and $\hat{\xi}_{e}$
- ▶ Estimate $B, E \mapsto D$ and $\hat{\xi}_d$

•
$$H_1 = \hat{I}(\{B, D\}, \hat{\xi}_e)$$

•
$$H_2 = \hat{I}(\{B, E\}, \hat{\xi}_d)$$

▶ Estimate $D, E \mapsto B$ and $\hat{\xi}_h$

$$H_3 = \hat{I}(\{D, E\}, \hat{\xi}_b)$$

$$1 = Argmin(H)$$

$$\mathcal{T} = [E, A]$$

- ► Estimate $D \mapsto B$ and $\hat{\zeta}_b$ ► Estimate $B \mapsto D$ and $\hat{\zeta}_d$
 - $H_2 = \hat{I}(B, \hat{\xi}_d)$

$$H_1 = \hat{I}(D, \hat{\xi}_b)$$

$$2 = Argmin(H)$$

$$\mathcal{T} = [D, E, A]$$

- ▶ Estimate $B, D \mapsto E$ and $\hat{\xi}_{e}$
- ▶ Estimate $B, E \mapsto D$ and $\hat{\xi}_d$

•
$$H_1 = \hat{I}(\{B, D\}, \hat{\xi}_e)$$

•
$$H_2 = \hat{I}(\{B, E\}, \hat{\xi}_d)$$

- ▶ Estimate $D, E \mapsto B$ and $\hat{\xi}_h$
 - $H_3 = \hat{I}(\{D, E\}, \hat{\xi}_b)$ 1 = Argmin(H) $\mathcal{T} = [E, A]$
- ► Estimate $D \mapsto B$ and $\hat{\zeta}_b$ ► Estimate $B \mapsto D$ and $\hat{\zeta}_d$
 - $H_2 = \hat{I}(B, \hat{\xi}_d)$

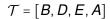
$$H_1 = \hat{I}(D, \hat{\xi}_b)$$

$$2 = Argmin(H)$$

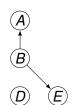
$$\mathcal{T} = [D, E, A]$$

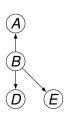
$$\mathcal{T} = [B, D, E, A]$$

$$\mathcal{T} = [B, D, E, A]$$



$$\mathcal{T} = [B, D, E, A]$$





Why is faithfulness needed for constraint-based methods whereas noise-based methods only need minimality?

After applying LiNGAM, how can you know if causal sufficiency is not respected?

- Suppose the true graph on right;
- Assumptions: CMC, causal sufficiency, minimality;
- Generative process:

$$Z = \xi_{Z}$$

$$X = a * Z + \xi_{X}$$

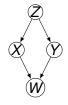
$$Y = b * Z + \xi_{Y}$$

$$W = c * X - d * Y + \xi_{W}$$

$$\xi_{Z} \sim U(0, 1);$$

$$\xi_{y} \sim U(0, 1);$$

$$\xi_{w} \sim N(0, 1).$$



Given a compatible distribution what would be the output of the LiNGAM algorithm? And what about the ANM algorithm?

- Suppose the true graph on right;
- Assumptions: CMC, causal sufficiency, minimality;
- Generative process:

$$Z = \xi_{z}$$

$$X = Z^{2} + \xi_{x}$$

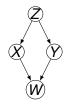
$$Y = Z^{3} + \xi_{y}$$

$$W = XY + \xi_{w}$$

$$\xi_{z} \sim U(0, 1);$$

$$\xi_{y} \sim U(0, 1);$$

$$\xi_{w} \sim U(0, 1).$$



Given a compatible distribution what would be the output of the LiNGAM algorithm? And what about the ANM algorithm?

Table of content

Preliminaries

Bivariate causal discovery

Multivariate causal discovery

- Under linear non gaussian models noise-based methods can discover the causal graph.
- Under non-linear additive noise models noise-based methods can discover the causal graph.
- Advantages:
 - Can discovery the true graph;
 - Faithfulness is not needed.
- Drawbacks:
 - Semi parametric assumptions;
 - Need large sample size.

- Under linear non gaussian models noise-based methods can discover the causal graph.
- Under non-linear additive noise models noise-based methods can discover the causal graph.
- Advantages:
 - Can discovery the true graph;
 - Faithfulness is not needed.
- Drawbacks:
 - Semi parametric assumptions;
 - Need large sample size

- Under linear non gaussian models noise-based methods can discover the causal graph.
- Under non-linear additive noise models noise-based methods can discover the causal graph.
- Advantages:
 - Can discovery the true graph;
 - Faithfulness is not needed.
- Drawbacks:
 - Semi parametric assumptions;
 - Need large sample size.

- Under linear non gaussian models noise-based methods can discover the causal graph.
- Under non-linear additive noise models noise-based methods can discover the causal graph.
- Advantages:
 - Can discovery the true graph;
 - Faithfulness is not needed.
- Drawbacks:
 - Semi parametric assumptions;
 - Need large sample size.

- Without causal sufficiency if linear relations;
- Extension to discrete additive noise models;
- Post non linear relations;
- Time series.

- Without causal sufficiency if linear relations;
- Extension to discrete additive noise models;
- Post non linear relations;
- Time series.

- Without causal sufficiency if linear relations;
- Extension to discrete additive noise models;
- Post non linear relations;
- Time series.

- Without causal sufficiency if linear relations;
- Extension to discrete additive noise models;
- Post non linear relations;
- Time series.

References (1/2)

Direct inspirations

- Elements of causal inference, J. Peters, D. Janzing, B. Schölkopf. MIT Press, 2nd edition, 2017
- DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model, S. Shimazu, T. Inazumi, Y. Sogawa, A. Hyvarinen, Y. Kawahara, T. Washio, P. Hoyer, K. Bollen. JMLR, 2011
- Nonlinear causal discovery with additive noise models, P. Hoyer,
 D. Janzing, J. Mooij, J. Peters, B. Schölkopf. Neurips, 2008
- Causal Discovery with Continuous Additive Noise Models, J. Peters, J. Mooij, D. Janzing, B. Schölkopf. JMLR, 2014

References (2/2)

Additional readings

- Causal inference from noise, N. Climenhaga, L. DesAutels, G. Ramsey. Noûs, 2019
- On the logic of causal models, D. Geiger, J. Pearl. In Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, 1990
- 3. A Linear Non-Gaussian Acyclic Model for Causal Discovery, S. Shimazu, P. Hoyer, A. Hyvarinen, A. Kerminen. JMLR, 2006
- Analyse générale des liaisons stochastiques., G. Darmois. Review of the International Statistical Institute, 1953
- 5. On a property of the normal distribution, W. P. Skitovitch. Doklady Akademii Nauk SSSR, 89:217–219, 1953
- Causal Inference on Time Series using Restricted Structural Equation Models, J. Peters, D. Janzing, B. Schölkopf. Neurips, 2013