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Recap about causal graphical models

Causal sufficiency

∀X ← Z → Y , if X ,Y ∈ V then Z ∈ V.

Topological ordering: Consider a causal DAG G = (V,E) and a
topological ordering T = {X1,⋯,Xp}. If Xi → Xj in G then i < j .
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The intuition behind the noise (1/2)

Suppose
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= 2X + ξy

Given P(X ,Y ), one can detect X −Y but what about
orientation?

Y ∶= 2X + ξy ?
or

Without further assumption we cannot know.

X ∶= Y
2 + ξ̂x?

Assume that the noise follow a uniform distribution on {−1,0,1}

X Y ξy = Y − 2X ξ̂x = X −Y /2
1 2 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
3 6 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
4 9 1 ∈ {−1,0,1} −0.5 /∈ {−1,0,1}
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The intuition behind the noise (2/2)

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= fx(ξx)
Y ∶= fy(X , ξy)

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

Backwards model:

X Y

ξx ξy

M2 ∶
⎧⎪⎪⎨⎪⎪⎩

Y ∶= gy(ξy)
X ∶= gx(Y , ξx)

▸ X /⊥⊥G ξy

▸ Y ⊥⊥G ξx
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Noise based question

Main question: Given P(V) a compatible probability distribution
of G, can we discover G?

No!
It is possible that Y ⊥⊥P ξ̂x .
Example:

X ∼ N(0,1)
ξy ∼ N(0,1)
Y ∶= 2X + ξy

Ô⇒ The Markov equivalence class is the best we can do!
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The linear case (1/2)

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= aX + ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξ̂x ?

Backwards model:

X Y

ξ̂x ξ̂y

M2 ∶
⎧⎪⎪⎨⎪⎪⎩

Y ∶= ξ̂y

X ∶= bY + ξ̂x

ξ̂x = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy
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The linear case (2/2)

Y = aX + ξy

ξ̂x = (1− ba)X − bξy

When Y ⊥⊥P ξ̂x ?

Theorem (Darmois-Skitovich): Let X1,⋯,Xn be independent,
non degenerate random variables. If for two linear
combinations:

l1 = a1X1 +⋯+ anXn

l2 = b1X1 +⋯+ bnXn

are independent, then each Xi is normally distributed.
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The linear non gaussian case (1/2)

Theorem (identiability of linear non-Gaussian models): Assume
that P(X ,Y ) admits the linear model

Y ∶= aX + ξy , X ⊥⊥P ξy ,

with continuous random variables X , ξy , and Y . Then there
exists b ∈ R and a random variable ξ̂x such that

X ∶= bY + ξ̂x , Y ⊥⊥P ξ̂x ,

if and only if ξy and X are Gaussian.
(proof on board)
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The linear non gaussian case (2/2)

Example:

X ∼ U(0,1)
ξy ∼ U(0,1)
Y ∶= 2X + ξy
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The non linear case (1/3)

Continuous additive noise models

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= fy(X)+ ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξ̂x ?
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The non linear case (2/3)

Theorem (identiability of additive noise models): Assume that
P(X ,Y ) admits the non-linear additive noise model

Y ∶= fy(X)+ ξy , X ⊥⊥P ξy ,

with continuous random variables X , ξy , and Y . Then there
exists g() and random variable ξ̂x such that

X ∶= fx(Y )+ ξ̂x , Y ⊥⊥P ξ̂x ,

if and only if Complicated Condition is satisfied.
(Hoyer et al, 2008)

Complicated Condition: The triple (fy ,P(X),P(ξy)) solves the
following differential equation for all x ,y with
(logP(ξy))′′(y − fy(x))f ′(x) ≠ 0.
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The non linear case (3/3)

▸ The space that satisfy the condition is a 3-dimentional
space;
The space of continuous distributions is infinite
dimensional;
Ô⇒ we have identifiability for most distributions.

▸ If the noise is Gaussian, then the only functional form that
satisfies Complicated Condition is linearity.

▸ If the function is linear and the noise is non-Gaussian, then
one can’t fit a linear backwards model but one can fit a
non-linear backwards models.
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Causal order discovery procedure in the bivariate case

Given P(X ,Y ) and a dependence estimator Î
Procedure:

1. Fit f̂Y and f̂X :

X Y Y Xf̂Y f̂X

2. Compute residuals ξ̂Y and ξ̂X :

X Y Y Xf̂Y f̂X

ξ̂Y ξ̂X

3. Order:
▸ T = [X ,Y ] if Î(x , ξ̂Y ) < Î(y , ξ̂X )
▸ T = [Y ,X ] if Î(y , ξ̂X ) < Î(x , ξ̂Y )

4. Output (suppose T = [X ,Y ]):
▸ X → Y if X ⊥⊥P ξ̂Y and Y /⊥⊥P ξ̂X
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Procedure:

1. Fit f̂Y and f̂X :

X Y Y Xf̂Y f̂X

2. Compute residuals ξ̂Y and ξ̂X :

X Y Y Xf̂Y f̂X

ξ̂Y ξ̂X

3. Order:
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Minimality

Minimality condition A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is
not compatible with any proper subgraph of G.

Remark: faithfulness Ô⇒ minimality.
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Minimality and d-sep

Theorem (implication of minimality on d-sep): Consider the
random vector V and assume that the joint distribution has a
density with respect to a product measure. Suppose that P(V)
is Markov with respect to G. Then P(V) satisfies the minimality
condition iff ∀X ∈ V and ∀Y ∈ Parents(X ,G),
X /⊥⊥P Y ∣ Parents(X ,G)/{Y}.
(proof on board)
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Violation of minimality

Example 1: canceling out

Z

X Y

2−+

+

Example 2: constant functions
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Linear non gaussian

Theorem (LiNGAM) Assume a linear SCM with graph G = (V,E)
and a compatible distribution P(V) such that ∀Y ∈ V

Y ∶= ∑
X∈Parents(Y ,G)

axyX + ξy

where all ξy are jointly independent and non-Gaussian
distributed. Additionally, we require that
∀Y ∈ V,X ∈ Parents(Y ,G),axy ≠ 0. Then, the graph G is
identifiable from P(V).
(proof in (Shimizu et al, 2011))
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The LiNGAM algorithm

Algorithm 1 LiNGAM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V = {X1,⋯,Xp}
2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for i ∈ S do
6: for j ∈ S/{i} do
7: ξ̂ij = Xj −

cov(Xi ,Xj)
var(Xi)

Xi

8: end for
9: h = ∑j∈S/{i} Î(Xi , ξ̂ij)

10: H = [H,h]
11: end for
12: i∗ = arg mini∈S H
13: S = S/{i∗}
14: T = [T , i∗]
15: ∀j ∈ S,Xj = ξ̂i∗j
16: until ∣S∣ = 0
17: Append(T , S0)
18: Construct a strictly lower triangular matrix by following the order in T , and estimate the connec-

tion strengths ai,j by using some conventional covariance-based regression.
19: if ai,j > 0 then
20: Add Xi → Xj to G
21: end if
22: Return G
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Additive noise models

Theorem (ANM) Assume a non-linear SCM with graph
G = (V,E) and a compatible distribution P(V) that satisfy the
minimality condition with respect to G. ∀Y ∈ V

Y ∶= f (Parents(Y ,G))+ ξy

where all ξy are jointly independent. Then, the graph G is
identifiable from P(V).
(proof in (Peters et al, 2014))
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The ANM algorithm

Algorithm 2 ANM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V = {X1,⋯,Xp}
2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for j ∈ S do
6: f̂.j : Regress X j on {Xi}i∈S/{j}
7: ξ̂.j = Xj − f̂.j(Xi)
8: h = Î({Xi}i∈S/{j}, ξ.j)
9: H = [H,h]

10: end for
11: i∗ = arg mini∈S H
12: S = S/{i∗}
13: T = [i∗,T ]
14: until ∣S∣ = 0
15: for j ∈ {2,⋯,p} do
16: for i ∈ {T1,⋯,Tj−1} do
17: f̂.j : Regress X j on {Xk}k∈{T1,⋯,Tj−1}/{i}

18: ξ̂.j = Xj − f̂.j(Xi)
19: if {Xk}k∈{T1,⋯,Tj−1}/{i} /⊥⊥P ξ.j then
20: Add Xi → Xj to G
21: end if
22: end for
23: end for
24: Return G
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ANM in action (1/4)

▸ Suppose the true graph on right;
▸ Assumptions: CMC, minimality, causal

sufficiency.

A

B

D E
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ANM in action (2/4)

▸ Estimate A,B,D ↦ E and
ξ̂e
▸ H1 = Î({A,B,D}, ξ̂e)

▸ Estimate A,D,E ↦ B and
ξ̂b
▸ H3 = Î({A,D,E}, ξ̂b)

▸ Estimate A,B,E ↦ D and
ξ̂d
▸ H2 = Î({A,B,E}, ξ̂d)

▸ Estimate B,D,E ↦ A and
ξ̂a
▸ H4 = Î({B,D,E}, ξ̂a)

4 = Argmin(H)
T = [A]

Assaad, Devijver Causal discovery: noise-based methods 27 / 38



ANM in action (2/4)

▸ Estimate A,B,D ↦ E and
ξ̂e
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ANM in action (3/4)

▸ Estimate B,D ↦ E and ξ̂e

▸ H1 = Î({B,D}, ξ̂e)
▸ Estimate D,E ↦ B and ξ̂b

▸ H3 = Î({D,E}, ξ̂b)

▸ Estimate B,E ↦ D and ξ̂d

▸ H2 = Î({B,E}, ξ̂d)

1 = Argmin(H)
T = [E ,A]

▸ Estimate D ↦ B and ξ̂b
▸ H1 = Î(D, ξ̂b)

▸ Estimate B ↦ D and ξ̂d
▸ H2 = Î(B, ξ̂d)

2 = Argmin(H)
T = [D,E ,A]

T = [B,D,E ,A]
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▸ H1 = Î(D, ξ̂b)

▸ Estimate B ↦ D and ξ̂d
▸ H2 = Î(B, ξ̂d)
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ANM in action (4/4)

T = [B,D,E ,A]
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Exercise 1

Why is faithfulness needed for constraint-based methods
whereas noise-based methods only need minimality?
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Exercise 2

After applying LiNGAM, how can you know if causal sufficiency
is not respected?

Assaad, Devijver Causal discovery: noise-based methods 31 / 38



Exercise 3

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = a ∗Z + ξx ξx ∼ U(0,1);
Y = b ∗Z + ξy ξy ∼ U(0,1);
W = c ∗X − d ∗Y + ξw ξw ∼ N(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm? And
what about the ANM algorithm?

Z

X Y

W
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Exercise 4

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = Z 2 + ξx ξx ∼ U(0,1);
Y = Z 3 + ξy ξy ∼ U(0,1);
W = XY + ξw ξw ∼ U(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm? And
what about the ANM algorithm?

Z

X Y

W
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Conclusion

▸ Under linear non gaussian models noise-based methods
can discover the causal graph.

▸ Under non-linear additive noise models noise-based
methods can discover the causal graph.

▸ Advantages:
▸ Can discovery the true graph;
▸ Faithfulness is not needed.

▸ Drawbacks:
▸ Semi parametric assumptions;
▸ Need large sample size.
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Some extensions

▸ Without causal sufficiency if linear relations;
▸ Extension to discrete additive noise models;
▸ Post non linear relations;
▸ Time series.
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