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Example

An image classifier observes photos of cats and dogs. The
variable Animal is a cause of variables such as Wears
Collar and Has Long Whiskers. A classifier should
understand that putting a collar on a cat does not make it a
dag, and making a dog’s whiskers longer does not make it a
cat. However, the classifier does not have direct access to
these variables, besides the label Animal. For both robustness
and interpretability, we may want the classifier to learn the
variables Wears Collar and Has Long Whiskers from the
pixels that it observes.

Animal

Wears CollarWhiskers Size
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Problem statement

▸ Data: image, or audio, or ... high-dimensional
▸ Classical modeling: ML for prediction on the dataset
▸ Causal inference: on the observed variables (pixels, blood

pressure, . . .)

The mechanism behind the variables we observed might be
meaningless, while there are underlying variables, latent, that
may be causally related.

Goal: understand the latent structure, and the mapping
between latent variables an observed variables

Robustness, interpretability, transferability!
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Causal disentanglement model

Definition: X ∈ Rp follows an (additive-noise) causal
disentanglement model if there exists Z ∈ Rd such that Z
follows a structural causal model M, and X = g(Z)+ η for some
mixing function g and η following a product distribution.
We call a causal disentanglement model deterministic if
X = g(Z), i.e., η = 0 almost surely.
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Problem statement

Given X generated from a causal disentanglement model, we
have two goals:
▸ Goal 1: Recover the causal graph over Z .
▸ Goal 2: Recover the mixing function g.

In the deterministic setting, if g is invertible, then h ∶= g−1

disentangles a sample Xi into its causal representation
Zi = h(Xi).
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Linear case

Definition: We call a causal disentanglement model linear if
1. Z follows a linear structural causal model,
2. g is a linear function.

Example: let ε1, ε2 be independent random variables. We
cannot identify between Z1 = ε1,Z2 = ε2 and
Z1 = ε1,Z2 = A12ε1 + ε2 with X being a linear combination of Z1
and Z2: the same distribution can be get, if selecting g smartly.
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Problem statement in the linear case

How to get identifiable models?
1. Restrict the form of the mixing function;
2. Restrict the form of the latent DAG;
3. Incorporate interventional data.
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Restricting the form of the mixing function

Any idea?

g = id : the latent DAG can be inferred up to the Markov
equivalence class, using only observational data.

disappointing ...

Less stringent condition: any idea?

Each latent variable Zi has a pure child (also called an anchor)
- an observed variable that depends only on Zi and no other
latent variables. The pure child assumption essentially says
that some submatrix of G is a scaled version of the identity.
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Restricting the form of the DAG

A dual approach would restrict the latent DAG instead of the
mixing function.

Any idea?

For example, linear independent component analysis (ICA)
assumes that the latent variables Zi are all independent.

Assumption: sparse factor graph joint distribution between
latent factors (high-level variables) and inference involves few
variables at a time.
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Incorporate interventional data

▸ Usually, most work assumes known-interventional data
▸ Real world: other agents or environment can intervene:

hence, interventions unknown
▸ How to handle unknown interventions? Infer it!
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Causal graphs for time series
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Figure: Full time causal graph.

A d-variate time series X
For a fixed t , each Xt is a vector (X 1

t , . . . ,X d
t ),

in which X p
t is the measurement of the pth time series at time t .

A causal graph for a multivariate time series X is said to be
consistent throughout time if all the causal relationships remain
constant in direction throughout time.
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Causal graphs for time series
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Causal discovery
Granger Causality1

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.

Pairwise Granger causality

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i + ξq

t , (Mres)

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i +

τ

∑
i=1

ap,iX
p
t−i + ξq

t , (Mfull)

Statistical test (e.g. F -test) can be used to determine whether
(Mfull) is significantly better than (Mres),

H0: X p does not Granger-cause X q.

1Granger, C. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 37(3), 424–38.
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Causal discovery
Granger Causality1

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.
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X q

X p

X r

X s

Figure: Running example: structure inferred by the pairwise Granger
method (an arbitrary order has been chosen for the example).
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Causal discovery
Granger Causality

Multivariate Granger causality

X q
t = aq,0 +

d
∑
r=1
r≠p

τ

∑
i=1

ar ,iX
p
t−i + ξq

t , (mvMres)

X q
t = aq,0 +

d
∑
r=1

τ

∑
i=1

ar ,iX r
t−i + ξq

t , (mvMfull)

Extensions
▸ Non-linear associations
▸ Nonstationnarity
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Causal discovery
Constraint-based approaches

Main difficulty when dealing with time series: determine a
good measure of (conditional) dependencies
▸ Measure : (partial) correlation, entropy, mutual information

...
▸ Estimation
▸ Type of data (continuous, discrete, mixed)

Representation of the time series
Optimal lag γpq and (λpq, λqp) the optimal windows:

γpq,λpq,λqp = argmax
γ≥0,λ1,λ2

h(X q
t ∶t+λ2

∣ X q
t−1,X

p
t−γ−1)

− h(X q
t ∶t+λ2

∣ X p
t−γ−1∶t−γ+λ1

,X q
t−1).

where h denotes the entropy.
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Causal discovery
Constraint-based approaches: PCMCI2 to discover a window causal graph

Full graph
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Figure: Running example: structure inferred by PCMCI with
instantaneous relations.

2Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.
(2019). Detecting and quantifying causal associations in large nonlinear time
series datasets. Science Advances, 5(11).
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Causal discovery
Constraint-based approaches: PCMCI2 to discover a window causal graph

Conditional independence
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Causal discovery
Constraint-based approaches: PCMCI2 to discover a window causal graph

Orientation with time
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Causal discovery
Constraint-based approaches: PCGCE3 to discover an extended summary causal
graph

Assumptions
▸ Causal Markov condition
▸ Faithfulness
▸ Causal sufficiency for PCGCE (but extension to FCIGCE)

Measure: need a specific one due to the graph structure
Proposed Greedy Causation Entropy (GCE)

GCE(X p → X q ∣X Pa,X Pr)

∶=I(X q
t ;X

p
t−γ∶t−1∣X

Pa1
t− ,⋯,X Pal

t− ,X Pr1
t ,⋯,X Prm

t )

3C. K. Assaad, E. Devijver, and E. Gaussier. Causal Discovery of
Extended Summary Graphs in Time Series, UAI 2022
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Causal discovery
Constraint-based approaches: PCGCE4 to discover an extended summary causal
graph

Full graph
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Figure: Running example: structure inferred by PCGCE with
instantaneous relations.
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Causal discovery
Constraint-based approaches: PCGCE4 to discover an extended summary causal
graph

Mutual Information
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Causal discovery
Noise-based approaches: VarLINGAM5
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Figure: Running example: structured inferred by VarLiNGAM.

5Hyvarinen, A., Zhang, K., Shimizu, S., Hoyer, P. O. Estimation of a
structural vector autoregression model using non-gaussianity. JMLR 2010
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Causal order: X s

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Figure: Running example: structured inferred by VarLiNGAM.

5Hyvarinen, A., Zhang, K., Shimizu, S., Hoyer, P. O. Estimation of a
structural vector autoregression model using non-gaussianity. JMLR 2010

Assaad, Devijver, Gaussier CRL and CI for TS 23 / 33
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Causal discovery
Noise-based approaches: VarLINGAM5

Causal order: X s,X p,X q
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Causal discovery
Noise-based approaches: VarLINGAM5
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Causal discovery
Noise-based approaches: VarLINGAM5

Lasso
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Figure: Running example: structured inferred by VarLiNGAM.
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structural vector autoregression model using non-gaussianity. JMLR 2010
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Causal discovery
NBCB6: a mix between noise-based and constraint-based approaches

Assumptions
▸ Causal Markov Condition
▸ Adjacency faithfulness: if X p and X q are adjacent, then

they are not conditionally independent given any subset of
vertices except Xp,Xq.

▸ Minimality
Step 1: causal ordering (additive noise model)
Last place: time series which yields the residuals that are more
independent to the other time series.
Step 2: pruning to remove spurious relations based on
(conditional) independence measure.

6C. K. Assaad, E. Devijver, and E. Gaussier. A Mixed Noise and Constraint
Based Approach to Causal Inference in Time Series, ECMLPKDD 2021
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Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Empty graph

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Figure: Running example: structured inferred by NBCB.
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Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Causal order: X r
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Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Causal order: X r ,X q

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Figure: Running example: structured inferred by NBCB.

Assaad, Devijver, Gaussier CRL and CI for TS 25 / 33



Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Causal order: X r ,X q,X p
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Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Causal order: X r ,X q,X p,X s
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Figure: Running example: structured inferred by NBCB.
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Causal discovery
NBCB: a mix between noise-based and constraint-based approaches

Conditional independence using TCE
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Figure: Running example: structured inferred by NBCB.
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Causal reasoning
Identifiability in FTCG and ECG

Assumptions: causal sufficiency, consistency throughout time.

Theorem 17: Consider an FTCG Gf (or equivalently a WCG).
The total effect P(yt ∣do(xt−γ)), with γ ≥ 0 is identifiable in Gf .

Theorem 2: Consider an ECG Ge. The total effect
P(yt ∣do(xt−γ)), with γ ≥ 0 is identifiable in Ge.

7Blondel et al. 2016,Shpitser et al. 2008
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Causal reasoning
Identifiability in SCG8

Assumptions: causal sufficiency, consistency throughout time.

Theorem 3: Consider an SCG Gs = (Vs,Es). The total effect
P(yt ∣do(xt−γ)), with γ ≥ 0, is not identifiable if and only if
X ∈ Anc(Y ,Gs) and one of the following holds:
▸ γ ≠ 0 and Cycles>(X ,Gs/{Y}) ≠ ∅, or
▸ there exists a σ-active back-door path

πs = ⟨V 1 = X ,⋯,V n = Y ⟩ such that
⟨V 2,⋯,V n−1⟩ ⊆ Desc(X ,Gs) and one of the following holds:

▸ n > 2, ie ⟨V 2,⋯,V n−1⟩ ≠ ∅, or
▸ γ ≠ 1, or
▸ γ = 1, n = 2 and Cycles(Y ,Gs/{X}) ≠ ∅.

8A. Meynaoui et al., Identifiability of total effects from abstractions of time
series causal graphs, submitted
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Causal reasoning
Identifiability in SCG: non identifiable example 1
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Figure: An SCG Gs
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Figure: Another FTCG compatible with the SCG
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Causal reasoning
Identifiability in SCG: non identifiable example 2

Z

X Y

Figure: An SCG Gs
2

and the total effect
P(yt ∣do(xt−1)).

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

ZtZt−1Zt−2

Figure: An FTCG compatible with the SCG Gs
2 .

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

ZtZt−1Zt−2

Figure: Another FTCG compatible with the SCG
Gs

2 .
Assaad, Devijver, Gaussier CRL and CI for TS 29 / 33



Causal reasoning
Identifiability in SCG: identifiable examples
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Figure: P(yt ∣do(xt−γ))
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Conclusion and perspectives

▸ Which causal graph do we want to infer?
▸ The representation of time series is essential (windows -

lags)
▸ Many families to discover causal graph for time series (also

score-based, logic-based, topology-based,
difference-based)

▸ Hybrid methods can take benefit of several worlds
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