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(conditional) Independence

Conditional independence of random variables For a
distribution P, X and Y are independent conditioned on Z ,
noted X ⊥⊥P Y ∣Z , iff :

P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z)
or P(X ∣Y ,Z) = P(X ∣Z) if P(Y ,Z) > 0

Properties
Symmetry:X ⊥⊥P Y ∣ Z Ô⇒ Y ⊥⊥P X ∣ Z
Decomposition:X ⊥⊥P Y ,W ∣ Z Ô⇒ X ⊥⊥P Y ∣ Z
Weak union:X ⊥⊥P Y ,W ∣ Z Ô⇒ X ⊥⊥P Y ∣ Z ,W
Contraction:X ⊥⊥P Y ∣ Z & X ⊥⊥P W ∣ Z ,Y Ô⇒ X ⊥⊥P Y ,W ∣
Z
Intersection:X ⊥⊥P W ∣ Z ,Y & X ⊥⊥P Y ∣ Z ,W Ô⇒ X ⊥⊥P
Y ,W ∣ Z
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Basic graph concepts

Consider the following graph G = (V,E):

Path: D ← B → E ← C
Directed path: A→ B → E → F → G
Parents: Pa(E) = {B,C}
Ancestors: An(E) = {A,B,C,E}
Children: Ch(C) = {E ,F}
Descendants: De(C) = {C,E ,F ,G}
Non-descendants: Nd(E) = {A,B,C,D}
Ancestral sets: a subset of nodes S
is ancestral (or upward-closed) if ∀S ∈
S,An(S) ⊆ S
Induced subgraph G[S]: G[{B,C,D,F}]
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Bayesian networks and compatibility

Compatibility We say that a distribution P(V) is compatible with
(or Markov relative to) a DAG G = (V,E) if
P(V) =∏X∈V P(X ∣Pa(X)).

Bayesian network A DAG (directed acyclic graph) G = (V,E) is
a Bayesian network iff there exists a joint distribution P(V) that
is compatible with G.

Decomposing with respect to ancestral sets If P is compatible
with G and S ⊆ V is an ancestral set, then
P(S) is compatible with G[S] (i.e., P(S) =∏S∈S P(S ∣Pa(S)))
and P(V/S ∣ S) is compatible with G[V/S]
(proof on board)
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Testing compatibility

Proposition (Ordered Markov condition) P is compatible with G
iff in any topological ordering X1,⋯,Xn of V, we have that

Xi ⊥⊥ X1,⋯,Xi−1 ∣ Pa(Xi) for i = 1,⋯,n
(proof on board)

Proposition (Parental Markov condition (also known as local
Markov condition)) P is compatible with G iff ∀X ∈ V we have
that

X ⊥⊥ Nd(X) ∣ Pa(X)
(proof on board)

Proposition (Conditioning on common ancestors) For disjoint
X ,Y,Z ⊆ V, if An(X )∩An(Y) ⊆ Z and An(Z) ⊆ (Z), then

P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z) (i.e.,X ⊥⊥P Y ∣Z)
in any distribution P compatible with G
(proof on board)
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Reading conditional independencies in graphs

A
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Basic structures

Fork
A C B A C B

Chain
A C B A C B

V-structure

A C B A C B

D
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Artificial correlation in V-structures

A C B

Example 1: A = {Chicken
Other/{Rooster}

B = {Rooster
Other/{Chicken}

C = A&B = {Chick
Other

If C = Chick Ô⇒ A = Chicken and B = Rooster

If C = Other Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A = Chicken and B = Other
A = Other and B = Rooster
A = Other and B = Other

Example 2: A,B ∼ U(−1,1) ξc ∼ N(0, 1
2) C = 2AB + ξc
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Corr(A;B) = 0.002

−1 −0.5 0 0.5 1
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A ∣ C > 0.5

B
∣C
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0.
5

Corr(A;B ∣ C > 0.5) = 0.8
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Blocked paths

Collider1 A triple such that X → Z ← Y . If the two parent
vertices are not adjacent, the collider is a v-structure (also
called unshielded collider or immorality)

Active and blocked paths A path is said to be blocked by a set
of vertices Z ∈ V if:
▸ it contains a chain A→ B → C or a fork A← B → C and

B ∈ Z, or
▸ it contains a collider A→ B ← C such that no descendant of

B is in Z

A path that is not blocked is active.

A path is active if every triple
along the path is active, and blocked if a single triple is blocked

1We also refer to Z as the collider
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d-separation

d-separation (also known as the global Markov condition) Given
disjoint sets X ,Y,Z ⊆ V, we say that X and Y are d-separated
by Z if every path between a node in X and a node in Y is
blocked by Z and we write X ⊥⊥G Y ∣Z.

If one of the above path is not blocked, we say that X and Y are
d-connected given Z
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d-separation and conditional independence

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X ⊥⊥G Y ∣Z ⇒ X ⊥⊥P Y ∣Z in every
distribution P compatible with G

(ii) Completeness If X /⊥⊥G Y ∣Z, then there exists a
distribution P compatible with G such that
X /⊥⊥P Y ∣Z

Proof in (Pearl, 1988)
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Reading conditional independencies in graphs using
d-separation
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More examples

A

B C

D E

F

G

▸ B ⊥⊥P G ∣F?
▸ A ⊥⊥P F ∣C,E?
▸ B ⊥⊥P E ∣F?
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Bayesian networks vs causal graph

Fuse

Bulb1 Bulb2

Bulb1 ⊥⊥P Bulb2 ∣ Fuse
Bayesian network

Not a causal graph

Fuse

Bulb1 Bulb2

Bulb1 ⊥⊥P Bulb2 ∣ Fuse
Bayesian network

Causal graph

Oracle for conditional
independence Oracle for intervention
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Conditioning vs Intervening (1/2)

Population A

Sub-populations
A ∣ B=0

A ∣ B=1

Conditioning
A ∣ B=0

B=1

B=0

A ∣ B=1

Intervening A ∣ do(B=0) A ∣ do(B=1)
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Conditioning vs Intervening (2/2)

A

B C

D E

E

F

G

A

B C

D E

E

F

G

Note that there are two types of interventions:
▸ Structural (or hard) intervention

(we will focus on this)

▸ Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions
For example P(a,b,c,d , f ,g ∣ do(e)) or PE=e(a,b,c,d , f ,g)
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The operator do() is a way to denote (hard) interventions
For example P(a,b,c,d , f ,g ∣ do(e)) or PE=e(a,b,c,d , f ,g)
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From association to causation (1/2)

Reminder: parental Markov condition

∀X ∈ V, X ⊥⊥ Nd(X) ∣ Pa(X)

Causal Markov condition

∀X ∈ V, X ⊥⊥ NotEffects(X) ∣ DirectCauses(X)
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From association to causation (2/2)

Reminder: Bayesian network factorization

Pr(V1,⋯,Vd) =∏
i
Pr(Vi ∣ Pa(Vi))

Pr(V1 = v1,⋯,Vd = vd) =∏
i
Pr(Vi = vi ∣ Pa(Vi))

Truncated factorization (also known as the manipulation
theorem) If we intervene on a subset S ⊂ V, then

Pr{S=s}(V1 = v1,⋯,Vd = vd) =∏
i/∈S

Pr(Vi ∣ Pa(Vi))

if v1,⋯,vd are values consistant with the intervention,
else,

Pr{S=s}(V1 = v1,⋯,Vd = vd) = 0
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Causal Bayesian networks

Causal Bayesian network Let P(V) be a probability distribution
and let P(V ∣ do(s)) denote the distribution resulting from the
intervention that sets a subset S of variables to constants s. Let
P∗ denote the set of all interventional distributions P(V ∣ do(s)).
A DAG G is said to be a causal Bayesian network compatible
with P∗ iff G and P∗ satisfy the truncated factorization.
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Applications

Causal discovery
▸ It is possible to infer a causal graph from observational

data?
▸ How?

Causal reasoning:
▸ Given a causal graph, is it possible to estimate the effect of

an intervention from observational data?
▸ How?

Identifiability: The causal effect of an intervention do(x) on a
set of variables Y such that Y ∩X = ∅ is said to be identifiable
from P in G if P(Y ∣ do(x)) is uniquely computable from P(V).
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Linear structural causal models

Linear structural causal model It consists on a set of structural
equations of the form:

y ∶= ∑
x∈Pa(y)

βxyx + ξy

where Pa(y) are direct causes of y , ξy represent errors due to
ommitted factors and βxy which are known as a structural
coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients:
Suppose the following linear structural causal model.

What is
the regression coefficient when we regress c on b?

M ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a ∶= ξa

b ∶= βaba+ ξb

c ∶= βaca+ ξc

b = β̂cbc + ξb

= β̂cb(βaca+ ξc)+ ξb

β̂cb =
b − ξb

βaca+ ξc

≠ 0

→ the regression is an important tool for causality (causal
inference, causal reasoning, . . . ) but causality goes beyond!
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Non-parametric structural causal models

Structural causal model A triple M = ⟨U ,V,F⟩ with

1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model

2. V = {X1, ...,Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in U ∪V

3. F is a set of functions s.t. fi (1 ≤ i ≤ n) specifies Xi :
Xi = f (Si) with Si ⊆ U ∪V

Probabilistic causal models A pair ⟨M,P⟩ with

1. M = ⟨U ,V,F⟩ is a structural causal model
2. P(U) is a joint distribution over U

P(U) and F induce a joint distribution P(V) over V.
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Induced graph

Induced graph The graph G induced by a structural causal
model M has vertices V and an edge Xi → Xj whenever fj
depends on Xi . In addition, G contains a bidirected edge,
denoted Xi ⇠⇢ Xj , whenever fi and fj depend on a common
subset of U .

Markovian causal model A causal model M is Markovian if the
graph induced by M contains no bidirected edges (the graph is
a DAG)
Semi-Markovian causal model A causal model M is
Semi-Markovian if the graph induced by M contains bidirected
edges (the graph is a ADMG)

Assaad, Devijver, Gaussier Introduction 29 / 36



Induced graph

Induced graph The graph G induced by a structural causal
model M has vertices V and an edge Xi → Xj whenever fj
depends on Xi . In addition, G contains a bidirected edge,
denoted Xi ⇠⇢ Xj , whenever fi and fj depend on a common
subset of U .

Markovian causal model A causal model M is Markovian if the
graph induced by M contains no bidirected edges (the graph is
a DAG)

Semi-Markovian causal model A causal model M is
Semi-Markovian if the graph induced by M contains bidirected
edges (the graph is a ADMG)

Assaad, Devijver, Gaussier Introduction 29 / 36



Induced graph

Induced graph The graph G induced by a structural causal
model M has vertices V and an edge Xi → Xj whenever fj
depends on Xi . In addition, G contains a bidirected edge,
denoted Xi ⇠⇢ Xj , whenever fi and fj depend on a common
subset of U .

Markovian causal model A causal model M is Markovian if the
graph induced by M contains no bidirected edges (the graph is
a DAG)
Semi-Markovian causal model A causal model M is
Semi-Markovian if the graph induced by M contains bidirected
edges (the graph is a ADMG)

Assaad, Devijver, Gaussier Introduction 29 / 36



Induced distribution in Markovian models

P(V) does not depend on U in Markovian causal models

P(V ∪U) =
n
∏
i=1

P(xi ∣Pa(xi),ui)P(ui)

∑
u

P(V ∪U) =∑
u

n
∏
i=1

P(xi ∣x1, ...,xi−1,ui)P(ui)

P(V) =∑
u

n
∏
i=1

P(xi ,ui ∣x1, ...,xi−1)
P(ui)

P(ui)

=
n
∏
i=1

P(xi ∣x1, ...,xi−1)
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Example of a Markovian model

M ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∶= fa(ξa)
B ∶= fb(A,H, ξb)
C ∶= fc(A,B, I, ξc)
D ∶= fd(C,F , ξd)
E ∶= fe(B,G, ξe)
F ∶= ff (C,G, ξf )
G ∶= fg(ξg)
H ∶= fh(G, ξh)
I ∶= fi(G, ξi)

A

B C

D

E F

G

H I

ξc

ξa

ξb

ξd

ξe ξf

ξg

ξh ξi
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Example of a semi-Markovian model

M ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ξa /⊥⊥ ξc

A

B C

D

E F

G

H I

ξc

ξa

ξb

ξd

ξe ξf

ξg

ξh ξi
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