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(conditional) Independence

For a
distribution P, X and Y are independent conditioned on Z,
noted X 1Lp Y|Z, iff:

P(X,Y|Z)=P(X|Z)P(Y|2)
or P(X|Y,Z)=P(X|2)ifP(Y,Z)>0
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noted X 1Lp Y|Z, iff:

P(X,Y|Z)=P(X|Z)P(Y|2)
or P(X|Y,Z)=P(X|2)ifP(Y,Z)>0

Properties

X1UpY|Z = Y1lUpX|Z

XUpY W|Z — X1pY|Z

XUpY W|Z = X1UpY|Z W

XUpY|Z&XUpWI|ZY — X1UpY, W]
Z

XUpW|ZY&XUpY|ZW = X1p
Y. W|Z
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Basic graph concepts

Consider the following graph G = (V, £):
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Basic graph concepts

Consider the following graph G = (V, £):

Path: D« B—-E « C
Directed path: A B->E->F->G
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Basic graph concepts

Consider the following graph G = (V, £):

D~B-E<«C
A-B-E-F->G
Pa(E) = {B, C}
An(E)={AB,C E}
Ch(C)={E, F}

A=)
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Basic graph concepts

Consider the following graph G = (V, £):

D~B-E<«C @
A-B-E-F->G
Pa(E) = {B, C} e
An(E)={AB,C E}
Ch(C)={E, F} @

De(C) = {C,E,F, G}

OROS0
\O

Assaad, Devijver, Gaussier Introduction 5/36



Basic graph concepts

Consider the following graph G = (V, £):

D«~B—-E<«C o
A-B-E-F->QG
Pa(E) = {B, C} e o
An(E)={AB,C E} e
Ch(C)={E, F}

De(C) = {C,E,F,G}
Nd(E) = {A B, C, D}
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An(E)={AB,C E} e
Ch(C)={E, F} @
De(C)={C,E, F,G}
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a subset of nodes S
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Basic graph concepts

Consider the following graph G = (V, £):

D-~B-E<C o
A-B—-E—-F->G
Pa(E) = {B, C} e e
An(E)={AB,C E}
Ch(C)={E, F} e e
De(C)={C,E, F,G}
Nd(E) ={A,B,C,D} G
a subset of nodes S
is ancestral (or upward-closed) if VS ¢ @
S,An(S)c S
G[{B,C,D, F}]
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Bayesian networks and compatibility

We say that a distribution P(V) is compatible with
(or Markov relative to) a DAG G = (V,€) if
P(V) = Ixev P(X| Pa(X)).
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Bayesian networks and compatibility

We say that a distribution P(V) is compatible with
(or Markov relative to) a DAG G = (V,€) if
P(V) = Ixev P(X| Pa(X)).

A DAG (directed acyclic graph) G = (V,€) is
a Bayesian network iff there exists a joint distribution P(V) that
is compatible with G.

If P is compatible
with G and S ¢ V is an ancestral set, then
P(S) is compatible with G[S] (i.e., P(S) =T1s.s P(S|Pa(S)))
and P(V\S | S) is compatible with G[V\S]
(proof on board)
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Testing compatibility

Proposition (Ordered Markov condition) P is compatible with G
iff in any topological ordering Xj, ---, X, of V, we have that
Xi 1L Xq,---, Xi_1 | Pa(X;) fori=1,---'n

(proof on board)
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Testing compatibility
Proposition (Ordered Markov condition) P is compatible with G
iff in any topological ordering Xj, ---, X, of V, we have that
Xi 1L Xy, -+, Xi_1 | Pa(X;) fori=1,---'n
(proof on board)

Proposition (Parental Markov condition (also known as local
Markov condition)) P is compatible with G iff YX € V we have
that

X 1L Nd(X) | Pa(X)

(proof on board)
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Testing compatibility
P is compatible with G
iff in any topological ordering Xj, ---, X, of V, we have that
Xi 1L Xq,---, Xi_1 | Pa(X;) fori=1,---n
(proof on board)

P is compatible with G iff VX € V we have
that
X 1L Nd(X) | Pa(X)

(proof on board)
For disjoint
XV, Z2cV,if An(X)nAn(Y) c Z and An(Z) c (Z), then
P(X,Y|2)=P(X|Z2)P(Y|Z)(i.e. X 1LpY|Z)

in any distribution P compatible with G
(proof on board)
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Reading conditional independencies in graphs
Allp D|B

i
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Artificial correlation in V-structures
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Artificial correlation in V-structures

] Y 7
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Chicken _ | Rooster
Other\{Rooster}”

Example 1:

Other\{Chicken}
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Artificial correlation in V-structures
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Chicken _ | Rooster
Other\{Rooster} | Other\{Chicken}

If C = Chick = A = Chicken and B = Rooster
A = Chicken and B = Other

If C = Other — { A = Other and B = Rooster
A = Other and B = Other

Example 1:
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Artificial correlation in V-structures

Chicken Rooster
N {Other\{Fn’ooster} - {Other\{Chicken}C - AB = {
If C = Chick — A = Chicken and B = Rooster
A = Chicken and B = Other
If C = Other = { A= Other and B = Rooster
A = Other and B = Other
Example 2: A, B~ U(-1,1) &~ N(0,3) C=2AB+{;

Chick
Other
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Artificial correlation in V-structures

Example 1: , _ {Ch/cken . {Fiooster _ ALB - {Chick
Other\{ Rooster} Other\{Chicken} Other
If C = Chick = A = Chicken and B = Rooster
A = Chicken and B = Other
If C = Other = { A= Other and B = Rooster
A = Other and B = Other
Example 2: A B~U(-1,1) &~ N(0,3) C=2AB+{;

"A\‘h l:
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ﬂ ..?*f.’
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T 05 0 05

Corr(A; B) =0.002
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Artificial correlation in V-structures

Example 1: Chicken Rooster Chick
P A= {Other\{Rooster}B {Other\{Chicken} - AB = {Other
If C = Chick = A = Chicken and B = Rooster
A = Chicken and B = Other
If C = Other = { A= Other and B = Rooster
A = Other and B = Other
Example 2: A, B~ U(-1,1) &~ N(0,3) C=2AB+{;

"Aa,: 1 0

s* PRS- ¥ 3
o8 f\.";*.%} 2 - -'x;.?rig:;
@ of % Lqe '7' Sof ., o0 ..::-.. .. N
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) .:.‘ic" Y | Wk

T 050 05 1

Corr(A; B) =0.002
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Blocked paths

T A triple such that X — Z < Y. If the two parent
vertices are not adjacent, the collider is a v-structure (also
called unshielded collider or immorality)

"We also refer to Z as the collider
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A path is said to be blocked by a set

of vertices Z € V if:

» it contains achain A—- B—- Corafork A<~ B — C and
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» it contains a collider A — B < C such that no descendant of
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Blocked paths

! A triple such that X — Z < Y. If the two parent
vertices are not adjacent, the collider is a v-structure (also
called unshielded collider or immorality)

A path is said to be blocked by a set

of vertices Z € V if:

» it contains achain A—- B—- Corafork A<~ B — C and
BeZ, or

» it contains a collider A — B < C such that no descendant of
Bisin Z

A path that is not blocked is active. A path is active if every triple
along the path is active, and blocked if a single triple is blocked

"We also refer to Z as the collider
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d-separation

Given
disjoint sets X', Y, Z ¢ V, we say that X and ) are d-separated
by Z if every path between a node in X and a node in ) is
blocked by Z and we write X 1l g V| Z.
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d-separation

Given
disjoint sets X', Y, Z ¢ V, we say that X and ) are d-separated
by Z if every path between a node in X and a node in ) is
blocked by Z and we write X 1l g V| Z.

If one of the above path is not blocked, we say that X and ) are
d-connected given Z
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d-separation and conditional independence

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)
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d-separation and conditional independence

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X 1L3Y|Z = X 1LpY|Z inevery
distribution P compatible with G
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d-separation and conditional independence

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

(i) Soundness X 1L3Y|Z = X 1LpY|Z inevery
distribution P compatible with G

(i) Completeness If XJA_G Y| Z, then there exists a
distribution P compatible with G such that

xfpy|z
Proof in (Pearl, 1988)
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Reading conditional independencies in graphs using
d-separation

?
Allp,D|B
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Reading conditional independencies in graphs using

d-separation
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Allp,D|B

<A, B,D > is not
blocked

?
— AllpD|B
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Reading conditional independencies in graphs using
d-separation

AllpD|B
@
@ © @
&0 0 g
© © clo
7 5

<A, B,D > is not
blocked @
? All paths are
= AllpD|B blocked

— AllpD|B
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Reading conditional independencies in graphs using
d-separation

A ij D|B
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blocked
? All paths are
= AllpD|B blocked
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Reading conditional independencies in graphs using
d-separation
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Reading conditional independencies in graphs using
d-separation

?
Allp,D|B

<A, B,D > is not 0 0
blocked © (o)
? All paths are
= AllpD|B blocked

— AllpD|B

Assaad, Devijver, Gaussier Introduction 16 /36



Reading conditional independencies in graphs using
d-separation

?
Allp,D|B

<A, B,D > is not
blocked ©
? All paths are
= AllpD|B blocked

— AllpD|B

Assaad, Devijver, Gaussier Introduction 16 /36



Reading conditional independencies in graphs using
d-separation

?
Allp,D|B

<A, B,D > is not
blocked ©
? All paths are <A I,G F D>is
= AllpD|B blocked not blocked

?
— AlpD|B  — All»D|B
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More examples

> BJ_LPG|F?
» Allp F|C E?
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More examples

e O ’BJ_LPG“:?
(o) (&) » Allp F|C E?

» BllpE|F?
(F)
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Bayesian networks vs causal graph

O

@ @@@

Bulby LLp Bulb, | Fuse Bulby 1L p Bulb, | Fuse
Bayesian network Bayesian network
Not a causal graph Causal graph

Oracle for conditional

independence Oracle for intervention
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Conditioning vs Intervening (2/2)
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Note that there are two types of interventions:
» Structural (or hard) intervention
» Parametric (or soft) intervention
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Conditioning vs Intervening (2/2)
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Note that there are two types of interventions:
» Structural (or hard) intervention (we will focus on this)
» Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions
For example P(a, b,c,d,f,g| do(e)) or Pe_¢(a, b, c,d, f,g)
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From association to causation (1/2)

Reminder: parental Markov condition

¥XeV, X1 Nd(X)|Pa(X)
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From association to causation (1/2)

Reminder: parental Markov condition

¥XeV, X1 Nd(X)|Pa(X)

VXeV, X 1L NotEffects(X) | DirectCauses(X)
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From association to causation (2/2)

Reminder: Bayesian network factorization

Pr(Vy,--, Vq) = H Pr(V;| Pa(V;))

Pr(Vi=vq,-,Vg=Vq) = H Pr(Vi=v;|Pa(V)))
1
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From association to causation (2/2)

Reminder: Bayesian network factorization

Pr(Vy,- Vg) = H Pr(Vi|Pa(V)))

Pr(Vi=vq,-,Vg=Vqg) = H Pr(V;=v;| Pa(V;))
i

If we intervene on a subset S c V, then

Prisesy (V1 = vy, Vg =vg) = [[Pr(V;| Pa(V;))
i¢5

if vq,---, Vg are values consistant with the intervention,
else,
Pr{szs}(V1 =Vq,-, Vd = Vd) =0
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Causal Bayesian networks

Let P(V) be a probability distribution
and let P(V | do(s)) denote the distribution resulting from the
intervention that sets a subset S of variables to constants s. Let
P. denote the set of all interventional distributions P(V | do(s)).
A DAG g is said to be a causal Bayesian network compatible
with P, iff G and P, satisfy the truncated factorization.
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Causal discovery

» |t is possible to infer a causal graph from observational
data?

» How?
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Applications

Causal discovery

» |t is possible to infer a causal graph from observational
data?

» How?

Causal reasoning:

» Given a causal graph, is it possible to estimate the effect of
an intervention from observational data?

» How?

: The causal effect of an intervention do(x) on a
set of variables Y such that Y n X = @ is said to be identifiable
from Pin G if P(Y | do(x)) is uniquely computable from P(V).
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Linear structural causal models

It consists on a set of structural
equations of the form:

y:= Z BxyX +Cy

xePa(y)

where Pa(y) are direct causes of y, ¢, represent errors due to
ommitted factors and B, which are known as a structural
coefficient represents the strength of the causal relation.
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xePa(y)
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Differences between regression and causal coefficients:
Suppose the following linear structural causal model.

a:= ga
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C:= lBaCa"‘ CC
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Linear structural causal models

It consists on a set of structural
equations of the form:
Y= Z PxyX + Gy
xePa(y)
where Pa(y) are direct causes of y, ¢, represent errors due to
ommitted factors and B, which are known as a structural
coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients:
Suppose the following linear structural causal model. What is
the regression coefficient when we regress ¢ on b?

b=Bec+Cp
a:=Ga = ,Bcb(,BaCf'ﬂJr Ge) +Cb
M:3b:=Bapa+ip . b-¢
C:=Pacd+Ge Peo = Baca+ e
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Non-parametric structural causal models
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Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

A triple M = (U, V, F) with

1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

Atriple M = (U, V, F) with
1. U is a set of unobserved background variables (also known

as exogenous variables or error terms) that are determined
by factors outside the model

2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

Atriple M = (U, V, F) with
1. U is a set of unobserved background variables (also known

as exogenous variables or error terms) that are determined
by factors outside the model

2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

3. Fis aset of functions s.t. f; (1 <i < n) specifies X;:
Xi=f(Sj) withS;cduV

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

Atriple M = (U, V, F) with
1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model
2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

3. Fis aset of functions s.t. f; (1 <i < n) specifies X;:
Xi=f(Sj) withS;cduV

A pair (M, P) with

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

Atriple M = (U, V, F) with
1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model
2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

3. Fis aset of functions s.t. f; (1 <i < n) specifies X;:
Xi=f(Sj) withS;cduV

A pair (M, P) with
1. M =(U,V,F)is a structural causal model

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

A triple M = (U, V, F) with

1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model

2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

3. Fis aset of functions s.t. f; (1 <i < n) specifies X;:
Xi=f(Sj) withS;cduV

A pair (M, P) with

1. M =(U,V,F)is a structural causal model
2. P(U) is ajoint distribution over U/

Assaad, Devijver, Gaussier Introduction 28/36



Non-parametric structural causal models

A triple M = (U, V, F) with

1. U is a set of unobserved background variables (also known
as exogenous variables or error terms) that are determined
by factors outside the model

2. V={Xj,..., Xn} is a set of observed variables (also known
as endogenous variables) that are determined by variables
in the model - that is, variables in i/ u'V

3. Fis aset of functions s.t. f; (1 <i < n) specifies X;:
Xi=f(Sj) withS;cduV

A pair (M, P) with
1. M =(U,V,F)is a structural causal model
2. P(U) is ajoint distribution over U/
P(U) and F induce a joint distribution P(V) over V.
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Induced graph

The graph G induced by a structural causal
model M has vertices V and an edge X; - X; whenever f;
depends on X;. In addition, G contains a bidirected edge,
denoted X; <--» X; , whenever f; and f; depend on a common
subset of U.
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A causal model M is Markovian if the
graph induced by M contains no bidirected edges (the graph is
a DAG)
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Induced graph

The graph G induced by a structural causal
model M has vertices V and an edge X; - X; whenever f;
depends on X;. In addition, G contains a bidirected edge,
denoted X; <--» X; , whenever f; and f; depend on a common
subset of U.

A causal model M is Markovian if the
graph induced by M contains no bidirected edges (the graph is
a DAG)

A causal model M is
Semi-Markovian if the graph induced by M contains bidirected
edges (the graph is a ADMG)
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Induced distribution in Markovian models

P(V) does not depend on U/ in Markovian causal models
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Induced distribution in Markovian models

P(V) does not depend on U/ in Markovian causal models

POV OU) = T POx| Pa(x), u)P()
i=1
ZP(VUU) ZHP(X,|X1 o Xz, U P(Uy)
P(x;, Ui X1, ..., Xi_1)

P) = S [] “ e X py

u j=1

n
=HP(XI|X11---in—1)
i=1
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Example of a Markovian model

A:=13(Ca)
B:=f,(A H,Cp)
C:=1(AB,1C:.)
D:=1y(C,F,Cy)
M:{E:=1(B,G,cie)
F:=1(C G.Cr)
G:=1y(Cg)

H:= (G, ¢n)
I:=1(G,¢)
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Example of a Markovian model

A:=f(Ca) 0

B:=f,(A H,Cp)

C = (A B, C0) (8)~(c)

D:=1fy(C,F.c0)
M:{E:=1y(B, G )

F:=1%(C,G,r)
G:=1y(Cg) e G‘
H = (G, n) ©

I:=£(G, <))
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Example of a semi-Markovian model

A:= fa(éa)
B:=fy(A H,p)
C:=1(AB,1:.)
D:=1y(C,F,Cy)
M:{E:= fe(B. G, Ce)
F:= ff(C, Gyéf)
G:= fg(gg)
H:=1(G, )
I:=1(G,c))

gall 2
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Example of a semi-Markovian model

A:=1(C2)

B:=fy(A H,p) 0
C:=1(AB,1:.)

D:=fy(C,F.Cy) G Q
M:{E:= fe(B. G, Ce)

F:= ff(C, Gyéf)

G:=1y(Cy) e G

H:=1,(G (1) (1)
I= (G, ) (e)
gall 2
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SCMs and interventions

SCM

A:=13(Ca)
B:=f,(A H, p)
C:=1(AB, 1)
D:=14(C,F,Cq)
M:{E:=1(B, G,ZCe)
F:=1f(C,G, )
G:=14(Co)

H = (G, ¢n)
I=1(G, )

Assaad, Devijver, Gaussier Introduction 33/36



SCMs and interventions

SCM

A:=Ta(Ca)
B:=f,(A H, p)
C:=1(AB, 1)
D:=14(C,F,Cq)
M:{E:=1(B, G,ZCe)
F:=1f(C,G, )
G:=14(Co)

H = (G, ¢n)
I=1(G, )

Assaad, Devijver, Gaussier

Interventional SCM

M. :

Introduction

A:=fa(Ca)
B:=fp(A H,Cp)
C:=c
D:=14(C,F,Cy)
E:=fs(B, G ce)
F:=1(C,G,dr)
G:=15(Co)

H = (G, ¢n)

I=1(G,¢))
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