Introduction to causal graphical models

Charles Assaad, Emilie Devijver, Eric Gaussier

charles.assaad@ens-lyon.fr

Preliminaries

Bayesian networks Graphs and probabilities d-separation

Causal graphs

Structural Causal Models

Conclusion

Preliminaries

Bayesian networks

Causal graphs

Structural Causal Models

Conclusion

(conditional) Independence

Conditional independence of random variables For a distribution *P*, *X* and *Y* are independent conditioned on *Z*, noted $X \perp P Y \mid Z$, *iff*:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

or $P(X|Y,Z) = P(X|Z)$ if $P(Y,Z) > 0$

(conditional) Independence

Conditional independence of random variables For a distribution *P*, *X* and *Y* are independent conditioned on *Z*, noted $X \perp P Y \mid Z$, *iff*:

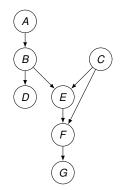
$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

or $P(X|Y,Z) = P(X|Z)$ if $P(Y,Z) > 0$

Properties

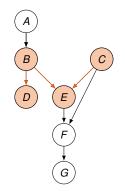
Symmetry: $X \coprod_P Y | Z \Longrightarrow Y \coprod_P X | Z$ Decomposition: $X \coprod_P Y, W | Z \Longrightarrow X \coprod_P Y | Z$ Weak union: $X \coprod_P Y, W | Z \Longrightarrow X \coprod_P Y | Z, W$ Contraction: $X \coprod_P Y | Z \& X \coprod_P W | Z, Y \Longrightarrow X \coprod_P Y, W | Z$ Intersection: $X \coprod_P W | Z, Y \& X \coprod_P Y | Z, W \Longrightarrow X \coprod_P Y, W | Z$

Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:



Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

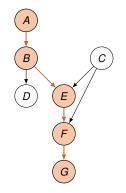
Path: $D \leftarrow B \rightarrow E \leftarrow C$



Introduction

Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

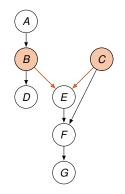
Path: $D \leftarrow B \rightarrow E \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$



Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

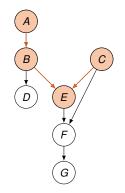
Path:
$$D \leftarrow B \rightarrow E \leftarrow C$$

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$
Parents: $Pa(E) = \{B, C\}$



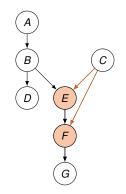
Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow E \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$



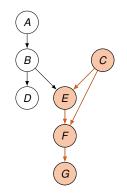
Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow E \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$ Children: $Ch(C) = \{E, F\}$



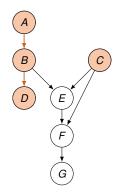
Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow E \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$ Children: $Ch(C) = \{E, F\}$ Descendants: $De(C) = \{C, E, F, G\}$



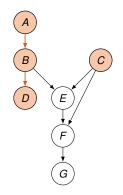
Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow E \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$ Children: $Ch(C) = \{E, F\}$ Descendants: $De(C) = \{C, E, F, G\}$ Non-descendants: $Nd(E) = \{A, B, C, D\}$



Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow F \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$ Children: $Ch(C) = \{E, F\}$ Descendants: $De(C) = \{C, E, F, G\}$ Non-descendants: $Nd(E) = \{A, B, C, D\}$ Ancestral sets: a subset of nodes Sis ancestral (or upward-closed) if $\forall S \in$ $S, An(S) \subseteq S$



Consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Path: $D \leftarrow B \rightarrow F \leftarrow C$ Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ Parents: $Pa(E) = \{B, C\}$ Ancestors: $An(E) = \{A, B, C, E\}$ Children: $Ch(C) = \{E, F\}$ Descendants: $De(C) = \{C, E, F, G\}$ Non-descendants: $Nd(E) = \{A, B, C, D\}$ Ancestral sets: a subset of nodes Sis ancestral (or upward-closed) if $\forall S \in$ $S, An(S) \subseteq S$ Induced subgraph $\mathcal{G}[\mathcal{S}]$: $\mathcal{G}[\{B, C, D, F\}]$

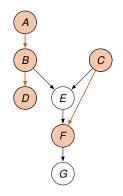


Table of content

Preliminaries

Bayesian networks Graphs and probabilities d-separation

Causal graphs

Structural Causal Models

Conclusion

Bayesian networks and compatibility

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X)).$

Bayesian networks and compatibility

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X)).$

Bayesian network A DAG (directed acyclic graph) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a Bayesian network *iff* there exists a joint distribution $P(\mathcal{V})$ that is compatible with \mathcal{G} .

Bayesian networks and compatibility

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X)).$

Bayesian network A DAG (directed acyclic graph) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a Bayesian network *iff* there exists a joint distribution $P(\mathcal{V})$ that is compatible with \mathcal{G} .

Decomposing with respect to ancestral sets If *P* is compatible with \mathcal{G} and $\mathcal{S} \subseteq \mathcal{V}$ is an ancestral set, then $P(\mathcal{S})$ is compatible with $\mathcal{G}[\mathcal{S}]$ (*i.e.*, $P(\mathcal{S}) = \prod_{S \in \mathcal{S}} P(S | Pa(S))$) and $P(\mathcal{V} \setminus \mathcal{S} | \mathcal{S})$ is compatible with $\mathcal{G}[\mathcal{V} \setminus \mathcal{S}]$ (proof on board)

Testing compatibility

Proposition (Ordered Markov condition) *P* is compatible with \mathcal{G} *iff* in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

 $X_i \perp X_1, \cdots, X_{i-1} \mid Pa(X_i)$ for $i = 1, \cdots, n$

(proof on board)

Testing compatibility

Proposition (Ordered Markov condition) *P* is compatible with \mathcal{G} *iff* in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

 $X_i \perp X_1, \cdots, X_{i-1} \mid Pa(X_i)$ for $i = 1, \cdots, n$

(proof on board)

Proposition (Parental Markov condition (also known as local Markov condition)) P is compatible with \mathcal{G} iff $\forall X \in \mathcal{V}$ we have that

 $X \perp \operatorname{Nd}(X) | \operatorname{Pa}(X)$

(proof on board)

Testing compatibility

Proposition (Ordered Markov condition) *P* is compatible with \mathcal{G} *iff* in any topological ordering X_1, \dots, X_n of \mathcal{V} , we have that

 $X_i \perp X_1, \cdots, X_{i-1} \mid Pa(X_i)$ for $i = 1, \cdots, n$

(proof on board)

Proposition (Parental Markov condition (also known as local Markov condition)) P is compatible with \mathcal{G} iff $\forall X \in \mathcal{V}$ we have that

 $X \perp Md(X) \mid Pa(X)$

(proof on board)

Proposition (Conditioning on common ancestors) For disjoint $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, if $An(\mathcal{X}) \cap An(\mathcal{Y}) \subseteq \mathcal{Z}$ and $An(\mathcal{Z}) \subseteq (\mathcal{Z})$, then $P(\mathcal{X}, \mathcal{Y}|\mathcal{Z}) = P(\mathcal{X}|\mathcal{Z})P(\mathcal{Y}|\mathcal{Z})$ (i.e., $\mathcal{X} \coprod_P \mathcal{Y}|\mathcal{Z})$

in any distribution P compatible with \mathcal{G} (proof on board)

Assaad, Devijver, Gaussier

Table of content

Preliminaries

Bayesian networks

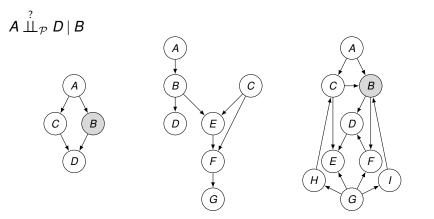
Graphs and probabilities d-separation

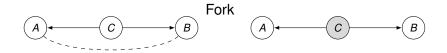
Causal graphs

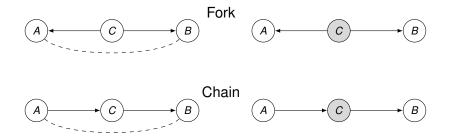
Structural Causal Models

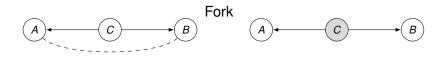
Conclusion

Reading conditional independencies in graphs

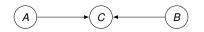


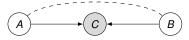


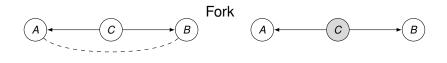




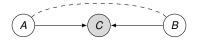
V-structure



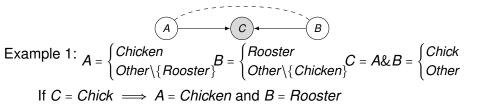




V-structure



Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \rangle \\ Other \rangle \end{cases}$$



$$A \longrightarrow C \longleftarrow B$$
Example 1: $A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \} = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \setminus \{Chicken\} \} \\ Other \setminus \{Chicken\} \} \end{cases}$
If $C = Chick \implies A = Chicken$ and $B = Rooster$

$$A = Chicken$$
 and $B = Other$
If $C = Other \implies \begin{cases} A = Chicken$ and $B = Rooster \\ A = Other$ and $B = Rooster$

$$A = Other$$
 and $B = Rooster$

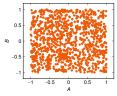
$$A = Other$$
 and $B = Rooster$

Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A\&B = \begin{cases} Chick \\ Other \setminus \{Chicken\} \end{cases} C = A\&B = \begin{cases} Chick \\ Other \setminus \{Chicken\} \end{cases}$$

If $C = Chick \implies A = Chicken$ and $B = Rooster$
 $A = Chicken$ and $B = Other$
If $C = Other \implies \begin{cases} A = Chicken$ and $B = Other \\ A = Other$ and $B = Other \\ A = Other$ and $B = Other$
Example 2: $A, B \sim U(-1, 1)$ $\xi_c \sim N(0, \frac{1}{2})$ $C = 2AB + \xi_c$

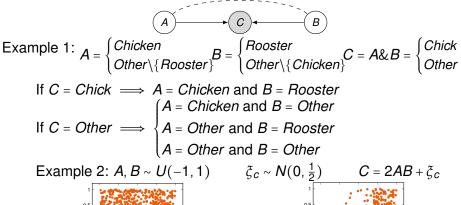
Example 1:
$$A = \begin{cases} Chicken \\ Other \setminus \{Rooster\} \end{cases} B = \begin{cases} Rooster \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \setminus \{Chicken\} \end{cases} C = A \& B = \begin{cases} Chick \\ Other \setminus \{Chicken\} \end{cases}$$

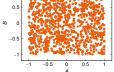
If $C = Chick \implies A = Chicken$ and $B = Rooster \\ A = Chicken$ and $B = Other \\ A = Other$ and $B = Rooster \\ A = Other$ and $B = Rooster \\ A = Other$ and $B = Other \\ C = 2AB + \xi_c \end{cases}$



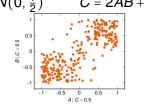
Corr(A; B) = 0.002

Assaad, Devijver, Gaussier





Corr(A; B) = 0.002



Corr(A; B | C > 0.5) = 0.8

Assaad, Devijver, Gaussier

Collider¹ A triple such that $X \rightarrow Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called unshielded collider or immorality)

¹We also refer to Z as the collider

Collider¹ A triple such that $X \rightarrow Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be <u>blocked</u> by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

¹We also refer to Z as the collider

Collider¹ A triple such that $X \rightarrow Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be <u>blocked</u> by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is active.

¹We also refer to Z as the collider

Collider¹ A triple such that $X \rightarrow Z \leftarrow Y$. If the two parent vertices are not adjacent, the collider is a <u>v-structure</u> (also called <u>unshielded collider</u> or <u>immorality</u>)

Active and blocked paths A path is said to be <u>blocked</u> by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is <u>active</u>. A path is active if every triple along the path is active, and blocked if a single triple is blocked

¹We also refer to Z as <u>the</u> collider

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{G} \mathcal{Y} \mid \!\!\!\mathcal{Z}$.

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{G} \mathcal{Y} \mid \!\!\!\mathcal{Z}$.

d-separation (also known as the global Markov condition) Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are <u>d-separated</u> by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{G} \mathcal{Y} \mid \!\!\!\mathcal{Z}$.

If one of the above path is not blocked, we say that ${\cal X}$ and ${\cal Y}$ are d-connected given ${\cal Z}$

d-separation and conditional independence

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X ⊥⊥_G Y | Z ⇒ X ⊥⊥_P Y | Z in every distribution P compatible with G

(ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$

Proof in (Pearl, 1988)

d-separation and conditional independence

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}

(ii) Completeness If $\mathcal{X} \not\perp_G \mathcal{Y} \mid \mathcal{Z}$, then there exists a distribution *P* compatible with *G* such that $\mathcal{X} \not\perp_P \mathcal{Y} \mid \mathcal{Z}$

Proof in (Pearl, 1988)

d-separation and conditional independence

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$

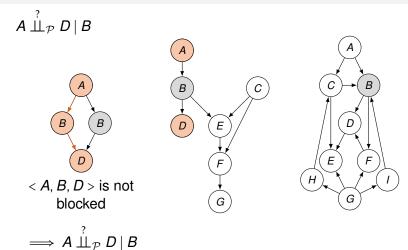
Proof in (Pearl, 1988)

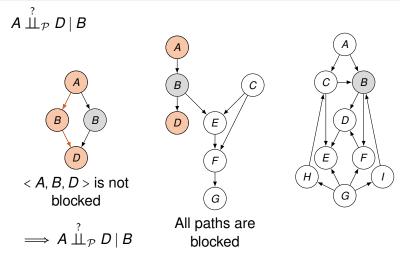
 $A \stackrel{?}{\amalg}_{\mathcal{P}} D \mid B$ В С В С В Ε Е F п F Н G G

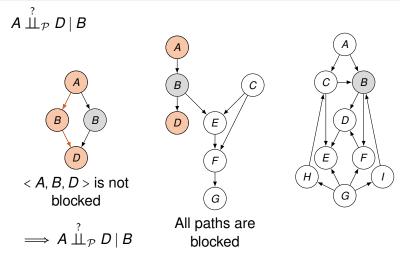
 $A \stackrel{?}{\amalg}_{\mathcal{P}} D \mid B$ В С В С В Ε Ε F D F Н G G

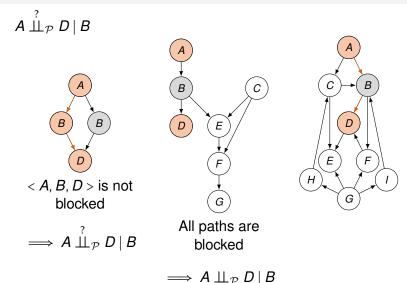
 $A \stackrel{?}{\amalg}_{\mathcal{P}} D \mid B$ В С В В В Ε Ε F D F Н G G

 $A \stackrel{?}{\amalg}_{\mathcal{P}} D \mid B$ С В В В В Ε Ε F D Н < *A*, *B*, *D* > is not G blocked G $\implies A \stackrel{?}{\amalg}_{\mathcal{P}} D \mid B$

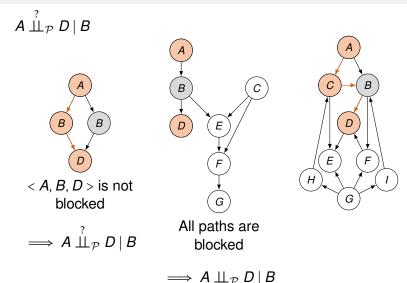




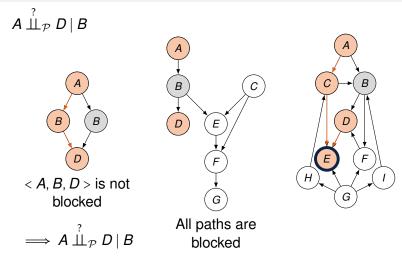


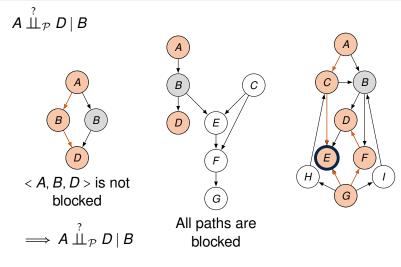


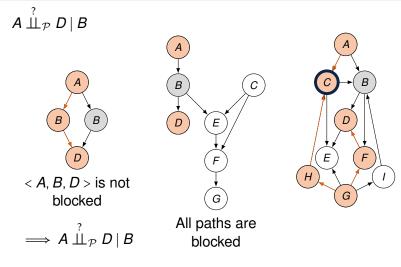
Introduction

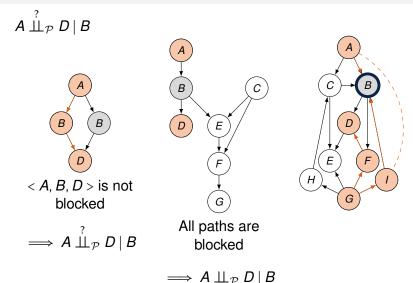


Introduction

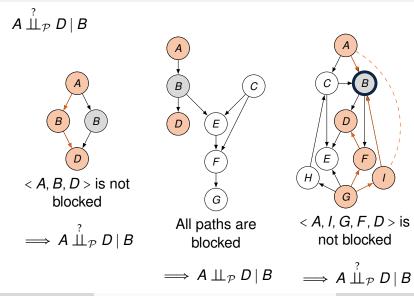


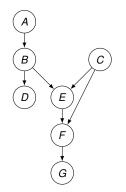




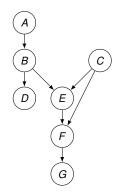


Introduction

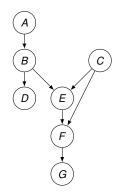




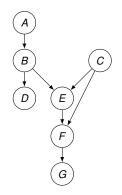
▶ B ⊥⊥_P G | F?
 ▶ A ⊥⊥_P F | C, E?
 ▶ B ⊥⊥_P E | F?



▶ B ⊥⊥_P G | F?
 ▶ A ⊥⊥_P F | C, E?
 ▶ B ⊥⊥_P E | F?



- ► B ⊥⊥_P G | F?
- ► A ⊥⊥_P F | C, E?
- $\blacktriangleright B \perp\!\!\!\perp_P E | F?$



- ► B ⊥⊥_P G | F?
- ► A ⊥⊥_P F | C, E?
- $B \perp_P E | F?$

Table of content

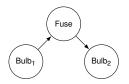
Preliminaries

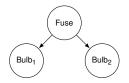
Bayesian networks Graphs and probabilities d-separation

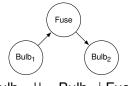
Causal graphs

Structural Causal Models

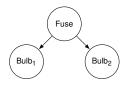
Conclusion



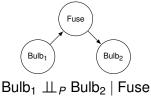




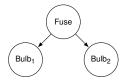
Bulb₁ <u>⊥⊥</u>_P Bulb₂ | Fuse Bayesian network



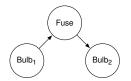
Bulb₁ *⊥ P* Bulb₂ | Fuse Bayesian network



Bulb1 II P Bulb2 | Fuse Bayesian network Not a causal graph



Bulb₁ <u>⊥⊥</u>_P Bulb₂ | Fuse Bayesian network Causal graph



Bulb₁ \coprod_P Bulb₂ | Fuse Bayesian network Not a causal graph Bulb₁ Bulb₂

Bulb₁ \coprod_P Bulb₂ | Fuse Bayesian network Causal graph

Oracle for conditional independence

Oracle for intervention

Conditioning vs Intervening (1/2)

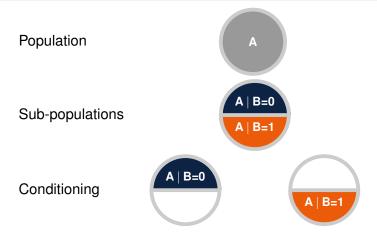
Population

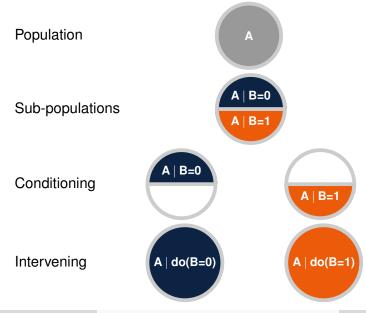
Conditioning vs Intervening (1/2)

Population

Sub-populations

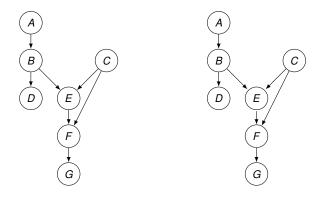
Conditioning vs Intervening (1/2)

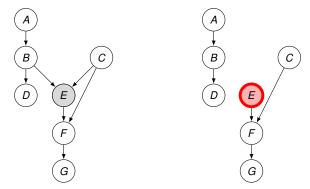




Assaad, Devijver, Gaussier

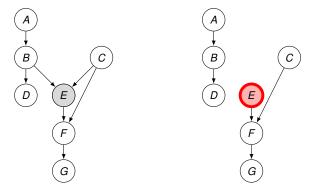
Introduction





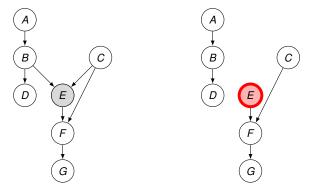
Note that there are two types of interventions:

- Structural (or hard) intervention
- Parametric (or soft) intervention



Note that there are two types of interventions:

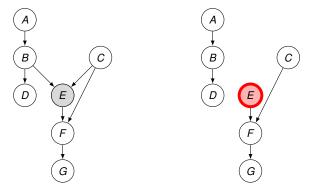
- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

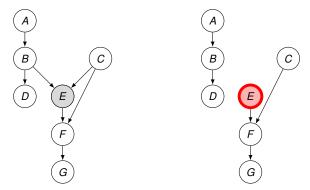
The operator *do*() is a way to denote (hard) interventions



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions For example $P(a, b, c, d, f, g \mid do(e))$



Note that there are two types of interventions:

- Structural (or hard) intervention (we will focus on this)
- Parametric (or soft) intervention

The operator do() is a way to denote (hard) interventions For example P(a, b, c, d, f, g | do(e)) or $P_{E=e}(a, b, c, d, f, g)$

From association to causation (1/2)

Reminder: parental Markov condition

 $\forall X \in \mathcal{V}, \qquad X \perp \mathit{Nd}(X) \mid \mathit{Pa}(X)$

From association to causation (1/2)

Reminder: parental Markov condition

$$\forall X \in \mathcal{V}, \qquad X \perp \mathit{Nd}(X) \mid \mathit{Pa}(X)$$

Causal Markov condition

 $\forall X \in \mathcal{V}, \quad X \perp \text{NotEffects}(X) \mid \text{DirectCauses}(X)$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$\Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i \Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$\Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i \Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

$$\Pr(\mathbf{V}_1 = \mathbf{v}_1, \dots, \mathbf{V}_d = \mathbf{v}_d) = \prod_i \Pr(\mathbf{V}_i = \mathbf{v}_i \mid Pa(\mathbf{V}_i))$$

From association to causation (2/2)

Reminder: Bayesian network factorization

$$\Pr(\mathbf{V}_1, \dots, \mathbf{V}_d) = \prod_i \Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

$$\Pr(\mathbf{V}_1 = \mathbf{v}_1, \dots, \mathbf{V}_d = \mathbf{v}_d) = \prod_i \Pr(\mathbf{V}_i = \mathbf{v}_i \mid \mathbf{Pa}(\mathbf{V}_i))$$

Truncated factorization (also known as the manipulation theorem) If we intervene on a subset $S \subset V$, then

$$\Pr_{\{S=s\}}(\mathbf{V}_1 = \mathbf{v}_1, \dots, \mathbf{V}_d = \mathbf{v}_d) = \prod_{i \notin S} \Pr(\mathbf{V}_i \mid Pa(\mathbf{V}_i))$$

if $\mathbf{v}_1, \dots, \mathbf{v}_d$ are values consistant with the intervention, else,

$$\Pr_{\{S=s\}}(\mathbf{V}_1 = \mathbf{v}_1, \cdots, \mathbf{V}_d = \mathbf{v}_d) = 0$$

Causal Bayesian network Let $P(\mathcal{V})$ be a probability distribution and let $P(\mathcal{V} \mid do(s))$ denote the distribution resulting from the intervention that sets a subset S of variables to constants s. Let \mathcal{P}_* denote the set of all interventional distributions $P(\mathcal{V} \mid do(s))$. A DAG \mathcal{G} is said to be a <u>causal Bayesian network</u> compatible with \mathcal{P}_* *iff* \mathcal{G} and \mathcal{P}_* satisfy the truncated factorization.

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- How?

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- How?

Causal reasoning:

Given a causal graph, is it possible to estimate the effect of an intervention from observational data?

How?

Applications

Causal discovery

- It is possible to infer a causal graph from observational data?
- How?

Causal reasoning:

- Given a causal graph, is it possible to estimate the effect of an intervention from observational data?
- How?

Identifiability: The causal effect of an intervention do(x) on a set of variables Y such that $Y \cap X = \emptyset$ is said to be identifiable from P in \mathcal{G} if P(Y | do(x)) is uniquely computable from $P(\mathcal{V})$.

Table of content

Preliminaries

Bayesian networks Graphs and probabilities d-separation

Causal graphs

Structural Causal Models

Conclusion

Linear structural causal model It consists on a set of structural equations of the form:

$$\mathbf{y} := \sum_{\mathbf{x} \in Pa(\mathbf{y})} \beta_{\mathbf{x}\mathbf{y}} \mathbf{x} + \xi_{\mathbf{y}}$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> <u>coefficient</u> represents the strength of the causal relation.

Linear structural causal model It consists on a set of structural equations of the form:

$$\mathbf{y} := \sum_{\mathbf{x} \in Pa(\mathbf{y})} \beta_{\mathbf{x}\mathbf{y}} \mathbf{x} + \xi_{\mathbf{y}}$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients: Suppose the following linear structural causal model.

$$M: \begin{cases} a \coloneqq \xi_a \\ b \coloneqq \beta_{ab}a + \xi_b \\ c \coloneqq \beta_{ac}a + \xi_c \end{cases}$$

Linear structural causal model It consists on a set of structural equations of the form:

$$\mathbf{y} := \sum_{\mathbf{x} \in Pa(\mathbf{y})} \beta_{\mathbf{x}\mathbf{y}} \mathbf{x} + \xi_{\mathbf{y}}$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients: Suppose the following linear structural causal model. What is the regression coefficient when we regress c on b?

$$M: \begin{cases} a \coloneqq \xi_a \\ b \coloneqq \beta_{ab}a + \xi_b \\ c \coloneqq \beta_{ac}a + \xi_c \end{cases}$$

Linear structural causal model It consists on a set of structural equations of the form:

$$\mathbf{y} := \sum_{\mathbf{x} \in Pa(\mathbf{y})} \beta_{\mathbf{x}\mathbf{y}} \mathbf{x} + \xi_{\mathbf{y}}$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients: Suppose the following linear structural causal model. What is the regression coefficient when we regress c on b?

Assaad, Devijver, Gaussier

Linear structural causal model It consists on a set of structural equations of the form:

$$\mathbf{y} := \sum_{\mathbf{x} \in Pa(\mathbf{y})} \beta_{\mathbf{x}\mathbf{y}} \mathbf{x} + \xi_{\mathbf{y}}$$

where Pa(y) are direct causes of y, ξ_y represent errors due to ommitted factors and β_{xy} which are known as a <u>structural</u> coefficient represents the strength of the causal relation.

Differences between regression and causal coefficients: Suppose the following linear structural causal model. What is the regression coefficient when we regress c on b?

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

- 1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model
- 2. P(U) is a joint distribution over U

Structural causal model A triple $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ with

- 1. \mathcal{U} is a set of unobserved background variables (also known as exogenous variables or error terms) that are determined by factors outside the model
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables (also known as endogenous variables) that are determined by variables in the model that is, variables in $\mathcal{U} \cup \mathcal{V}$
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f(S_i)$ with $S_i \subseteq \mathcal{U} \cup \mathcal{V}$

Probabilistic causal models A pair $\langle M, P \rangle$ with

- 1. $M = \langle \mathcal{U}, \mathcal{V}, \mathcal{F} \rangle$ is a structural causal model
- 2. P(U) is a joint distribution over U

 $P(\mathcal{U})$ and \mathcal{F} induce a joint distribution $P(\mathcal{V})$ over \mathcal{V} .

Induced graph

Induced graph The graph \mathcal{G} induced by a structural causal model M has vertices \mathcal{V} and an edge $X_i \rightarrow X_j$ whenever f_j depends on X_i . In addition, \mathcal{G} contains a bidirected edge, denoted $X_i \leftrightarrow X_j$, whenever f_i and f_j depend on a common subset of \mathcal{U} .

Induced graph

Induced graph The graph \mathcal{G} induced by a structural causal model M has vertices \mathcal{V} and an edge $X_i \rightarrow X_j$ whenever f_j depends on X_i . In addition, \mathcal{G} contains a bidirected edge, denoted $X_i \leftrightarrow X_j$, whenever f_i and f_j depend on a common subset of \mathcal{U} .

Markovian causal model A causal model M is <u>Markovian</u> if the graph induced by M contains no bidirected edges (the graph is a DAG)

Induced graph The graph \mathcal{G} induced by a structural causal model M has vertices \mathcal{V} and an edge $X_i \rightarrow X_j$ whenever f_j depends on X_i . In addition, \mathcal{G} contains a bidirected edge, denoted $X_i \leftrightarrow X_j$, whenever f_i and f_j depend on a common subset of \mathcal{U} .

Markovian causal model A causal model M is <u>Markovian</u> if the graph induced by M contains no bidirected edges (the graph is a DAG) Semi-Markovian causal model A causal model M is <u>Semi-Markovian</u> if the graph induced by M contains bidirected edges (the graph is a ADMG)

Induced distribution in Markovian models

$P(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V} \cup \mathcal{U}) = \prod_{i=1}^{n} P(x_i | Pa(x_i), u_i) P(u_i)$$

$$\sum_{u} P(\mathcal{V} \cup \mathcal{U}) = \sum_{u} \prod_{i=1}^{n} P(x_i | x_1, ..., x_{i-1}, u_i) P(u_i)$$

$$P(\mathcal{V}) = \sum_{u} \prod_{i=1}^{n} \frac{P(x_i, u_i | x_1, ..., x_{i-1})}{P(u_i)} P(u_i)$$

$$= \prod_{i=1}^{n} P(x_i | x_1, ..., x_{i-1})$$

Induced distribution in Markovian models

 $P(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V} \cup \mathcal{U}) = \prod_{i=1}^{n} P(x_i | Pa(x_i), u_i) P(u_i)$$

$$\sum_{u} P(\mathcal{V} \cup \mathcal{U}) = \sum_{u} \prod_{i=1}^{n} P(x_i | x_1, ..., x_{i-1}, u_i) P(u_i)$$

$$P(\mathcal{V}) = \sum_{u} \prod_{i=1}^{n} \frac{P(x_i, u_i | x_1, ..., x_{i-1})}{P(u_i)} P(u_i)$$

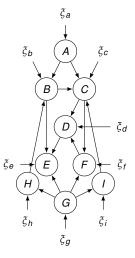
$$= \prod_{i=1}^{n} P(x_i | x_1, ..., x_{i-1})$$

Example of a Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$

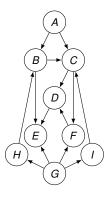
Example of a Markovian model

$$M: \begin{cases} A \coloneqq f_a(\xi_a) \\ B \coloneqq f_b(A, H, \xi_b) \\ C \coloneqq f_c(A, B, I, \xi_c) \\ D \coloneqq f_d(C, F, \xi_d) \\ E \coloneqq f_e(B, G, \xi_e) \\ F \coloneqq f_e(B, G, \xi_e) \\ F \coloneqq f_f(C, G, \xi_f) \\ G \coloneqq f_g(\xi_g) \\ H \coloneqq f_h(G, \xi_h) \\ I \coloneqq f_i(G, \xi_i) \end{cases}$$



Example of a Markovian model

$$M: \begin{cases} A \coloneqq f_a(\xi_a) \\ B \coloneqq f_b(A, H, \xi_b) \\ C \coloneqq f_c(A, B, I, \xi_c) \\ D \coloneqq f_d(C, F, \xi_d) \\ E \coloneqq f_e(B, G, \xi_e) \\ F \coloneqq f_e(B, G, \xi_f) \\ G \coloneqq f_g(\xi_g) \\ H \coloneqq f_h(G, \xi_h) \\ I \coloneqq f_i(G, \xi_i) \end{cases}$$



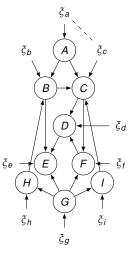
Example of a semi-Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$

ξa∦ ξc

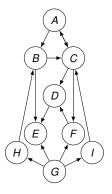
Example of a semi-Markovian model

$$M : \begin{cases} A := f_a(\zeta_a) \\ B := f_b(A, H, \zeta_b) \\ C := f_c(A, B, I, \zeta_c) \\ D := f_d(C, F, \zeta_d) \\ E := f_e(B, G, \zeta_e) \\ F := f_f(C, G, \zeta_f) \\ G := f_g(\zeta_g) \\ H := f_h(G, \zeta_h) \\ I := f_i(G, \zeta_i) \end{cases}$$



Example of a semi-Markovian model

$$M: \begin{cases} A := f_a(\xi_a) \\ B := f_b(A, H, \xi_b) \\ C := f_c(A, B, I, \xi_c) \\ D := f_d(C, F, \xi_d) \\ E := f_e(B, G, \xi_e) \\ F := f_f(C, G, \xi_f) \\ G := f_g(\xi_g) \\ H := f_h(G, \xi_h) \\ I := f_i(G, \xi_i) \end{cases}$$



ξa∦ ξc

SCMs and interventions

SCM

$$M : \begin{cases} A := f_a(\zeta_a) \\ B := f_b(A, H, \zeta_b) \\ C := f_c(A, B, I, \zeta_c) \\ D := f_d(C, F, \zeta_d) \\ E := f_e(B, G, \zeta_e) \\ F := f_f(C, G, \zeta_f) \\ G := f_g(\zeta_g) \\ H := f_h(G, \zeta_h) \\ I := f_i(G, \zeta_i) \end{cases}$$

SCMs and interventions

Interventional SCM

)

Table of content

Preliminaries

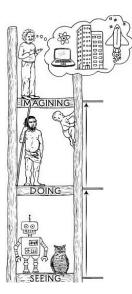
Bayesian networks Graphs and probabilities d-separation

Causal graphs

Structural Causal Models

Conclusion

Conclusion



SCMs

Causal graphs

Bayesian networks

Introduction

References

- An Introduction to Causal Graphical Models, S. Gordon (slides available at https://simons.berkeley.edu/sites/default/files/docs/18989/cau22bcspencergordon.pdf)
- 2. An Introduction to Causal Graphical Models, V. Kumar, A. Capiln, C. Park, S. Gordon, L. Schulman (handout available at https://tinyurl.com/causalitybootcamp)
- 3. *Causality*, J. Pearl. Cambridge University Press, 2nd edition, 2009
- Probabilistic Reasoning in Intelligent Systems, J. Pearl. The Morgan Kaufmann Series in Representation and Reasoning, 1988