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Recap about causal graphical models (1/1)

Active and blocked paths A path is said to be blocked by a set
of vertices Z ∈ V if:
▸ it contains a chain A→ B → C or a fork A← B → C and

B ∈ Z, or
▸ it contains a collider A→ B ← C such that no descendant of

B is in Z.

d-separation Given disjoint sets X ,Y,Z ⊆ V, we say that X and
Y are d-separated by Z if every path between a node in X and
a node in Y is blocked by Z and we write X ⊥⊥G Y ∣Z.
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Recap about causal graphical models (2/2)

The do() operator allows to represent interventions in equa-
tions.
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Recap about the Back-door and Front-door criteria
(1/3)

The back-door criterion: Consider a causal graph G and a
causal effect P(y ∣ do(x)). A set of variables Z satisfies the
back-door criterion iff:
▸ no node in Z is a descendant of X ;
▸ Z blocks every path between X and Y that contains an

arrow into X .

Theorem (back-door adjustment): If Z satisfies the back-door
criterion relative to (X ,Y ) and if Pr(x ,z) > 0, then the causal
effect of X on Y is identifiable and is given by

Pr(y ∣ do(x)) =∑
z
Pr(y ∣ x ,z)Pr(z).
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Recap about the Back-door and Front-door criteria
(2/3)

Front-door criterion: Consider a causal graph G and a causal
effect Pr(y ∣ do(x)). A set of variables Z satisfies the front-door
criterion iff:
▸ Z intercepts all directed paths from X to Y ;
▸ There is no back-door path from X to Z;
▸ All back-door paths from Z to Y are blocked by X .

Theorem (front-door adjustment): if Z satisfies the front-door
criterion relative to (X ,Y ) and if Pr(x ,z) > 0, then the causal
effect of X on Y is identifiable and is given by

Pr(y ∣ do(X = x)) =∑
z
Pr(z ∣ x)∑

x ′
Pr(y ∣ x ′,z)Pr(x ′).
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Recap about the Back-door and Front-door criteria
(3/3)

▸ If there exists a set that satisfy the back-door criterion for
Pr(y ∣ do(x)), then Pr(y ∣ do(x)) is identifiable;

▸ If there exists a no set that satisfy the back-door criterion
for Pr(y ∣ do(x)), then Pr(y ∣ do(x)) is not necesarly not
identifiable.

▸ If there exists a set that satisfy the front-door criterion for
Pr(y ∣ do(x)), then Pr(y ∣ do(x)) is identifiable;

▸ If there exists a no set that satisfy the fack-door criterion for
Pr(y ∣ do(x)), then Pr(y ∣ do(x)) is not necesarly not
identifiable.

The combination of the back-door and front door criteria are
also incomplete.
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Augmented Graphs

Consider Pr(y ∣ do(z)) and the Probabilistic Causal Model:

M =< U ,V,F ,P(U) >

Augmented model of M for do(z)

Aug(M,Z) =< U ,V ∪ Ẑ,FẐ ,P(U) >

where ∀Ẑ ∈ Ẑ, Ẑ represents do(z).

Augmented graph of G for do(z)

Aug(G,Z) = G ∪ {Ẑ → Z ∣ ∀Ẑ ∈ Ẑ}

and in the compatible distribution, ∀Z ∈ Z

P(z ∣ Pa(z), ẑ) =
⎧⎪⎪⎨⎪⎪⎩

P(z ∣ Pa(z)) if Ẑ = idle
ẑ if Ẑ = do(z)
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Example of an augmented graph
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Rule 1: Insertion / deletion of observations

Theorem Let G = (V,E) be a causal graph. Let X ,Y,Z,W ⊆ V
be disjoint. We have:

Pr(y ∣do(x),z,w) = Pr(y ∣do(x),w) if (Y ⊥⊥ Z ∣X ,W)GX
(proof on board)

Remark: This Rule is a generalization of d-separation.
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Rule 2: Action/observation exchange

Theorem Let G = (V,E) be a causal graph. Let X ,Y,Z,W ⊆ V
be disjoint. We have:

Pr(y ∣do(x),do(z),w) = Pr(y ∣do(x),z,w) if (Y ⊥⊥ Z ∣X ,W)GXZ

Proof: Follows the following Lemma

Lemma Let G = (V,E) be a causal graph. Let X ,Y,Z,W ⊆ V be
disjoint.

(Y ⊥⊥ Z ∣ X ,W)GXZ ⇐⇒ (Ẑ ⊥⊥ Y ∣ X ,Z,W)Aug(GXZ ,Z)

(proof on board)

Remark: This Rule is a generalization of the back-door
criterion.
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Rule 3: insertion / deletion of actions

Theorem Let G = (V,E) be a causal graph. Let X ,Y,Z,W ⊆ V
be disjoint. We have:

Pr(y ∣do(x),do(z),w) = Pr(y ∣do(x),w) if (Y ⊥⊥ Z ∣X ,W)GXZ(W)
where Z(W) is the set of Z-vertices that are not ancestors of
anyW-vertex in GX
Proof in (Pearl, 1995)
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Intuition for Rule 3

Pr(y ∣do(x),do(z),w) = Pr(y ∣do(x),w) if (Y ⊥⊥ Z ∣X ,W)GXZ(W)
where Z(W) is the set of Z-vertices that are not ancestors of
anyW-vertex in GX

Suppose

Pr(y ∣ do(z),w1,w2)
= Pr(y ∣ w1,w2)
if (Y ⊥⊥ Z ∣W1,W2)GZ
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Completness of the do-calculus

Theorem A causal effect P(y ∣ do(x)) is identifiable in a model
characterized by a graph G if and only if there exists a finite
sequence of transformations, each conforming to one the Rules
1-3, that reduces P(y ∣ do(x)) into a standard (i.e., "do"-free)
probability expression involving observed quantities.

Proof in (Pearl, 1995) and (Shpitser and Pearl, 2006)

Assaad, Devijver, Gaussier Do-calculus 17 / 43



From do-calculus to back-door adjustment

Age

Exercise Cholesterol

What’s the effect of exercice on cholesterol?

Pr(c ∣ do(e)) =∑
a
Pr(c ∣ do(e),a)Pr(a ∣ do(e)) (Probability Axioms)

=∑
a
Pr(c ∣ e,a)Pr(a ∣ do(e)) (Rule 2)

=∑
a
Pr(c ∣ e,a)Pr(a) (Rule 3)
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From do-calculus to back-door adjustment

Age
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From do-calculus to front-door adjustment

Tar CancerSmoking

What’s the effect of smoking on cancer?

Pr(c ∣ do(s)) =∑
t
Pr(c ∣ do(s), t)Pr(t ∣ do(s)) (Probability Axioms)

=∑
t
Pr(c ∣ do(s),do(t))Pr(t ∣ do(s)) (Rule 2)

=∑
t
Pr(c ∣ do(s),do(t))Pr(t ∣ s) (Rule 2)

=∑
t
Pr(c ∣ do(t))Pr(t ∣ s) (Rule 3)

=∑
s′
∑

t
Pr(c ∣ do(t), s′)Pr(s′ ∣ do(t))Pr(t ∣ s) (Probability Axioms)

=∑
s′
∑

t
Pr(c ∣ t , s′)Pr(s′ ∣ do(t))Pr(t ∣ s) (Rule 2)

=∑
s′
∑

t
Pr(c ∣ t , s′)Pr(s′)Pr(t ∣ s) (Rule 3)
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From a calculus toward an automated algorithm

Limitations of the do-calculus:
▸ The do-calculus demands a lot of manual labor
▸ Non-identifiability is complicated

Is it possible automatize it?

Yes! There exists many algorithms.
In this course we will focus on the ID algorithm.
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Some lemmas

Lemma (adding do on non-ancestors)
If

W = (V/X )/An(Y)GX
,

then
Pr(y ∣ do(x)) = Pr(y ∣ do(x),do(w)),

where w are arbatrary values ofW.

(proof on board)
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Trees and forests

Tree A graph G such that each vertex has at
most one child, and only one vertex (called
the root) has no children.

Forest A graph G such that each vertex has
at most one child.
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C-components

Confounded path A path where all directed
arrowheads point at observable vertices,
and never away from observable vertices.

C-component A graph G where any pair of
observable vertices is connected by a con-
founded path.
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Decomposition into C-components

Any graph can be uniquely partitioned into a collection of
subgraphs C(G), each which is a maximal C-component.

C(G) =

?

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G[A,B,D,E]
G[C]
G[F ,G]

A

B

D E

F

G

C

Lemma (c-component factorization) Let G = (V,E) be a causal
graph. Let C(G/X ) = {S1,⋯,Sk}. Then

Pr(y ∣ do(x)) = ∑
V/(y∪x)

∏
i
Pr(si ∣ v/si)

Proof in (Tian, 2002)
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Hedges

C-forest A graph G which is both a C-
component and a forest. If a given C-forest
has a set of root nodes R, we call it R-
rooted.

Hedge Let X ,X ∈ V in G. Let H,H′ be two
R-rooted C-forests in G such that
▸ H′ ⊂H,
▸ H ∩X ≠ ∅,
▸ H′ ∩X = ∅, and
▸ R ∈ An(Y )GX .

Then H and H′ form a hedge for
P(y ∣do(x)).

W1 Y1

W2 Y2

X
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Find hedges for Pr(y ∣ do(x))

X Y

YX Y

X Z Y

ZX Z

X Z Y

Z YX Z Y

Z X

W

Y

Y

Z X

W

Y

Z X

W

Y1Y2

Z

W

Y2

Z X

W

Y2
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Hedges and non-identifiability

Theorem (Hedge criterion for non-identifiability) Pr(y ∣ do(x)) is
not identifiable if and only if G contains a hedge for some
Pr(y ′,do(x ′)), where Y ′ ∈ Y, X ′ ∈ X .
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ID algorithm

Algorithm 1 ID
Input: Y, X , Pr(V), G
Output: do-free expression for Pr(y ∣ do(x)) or FAIL(H,H′)

1: if X = ∅ then
2: Return ∑V/Y Pr(v)
3: if V ≠ An(Y)G then
4: Return ID(y ,x ∩An(Y)G ,∑V/An(Y)G Pr(v),G[An(Y)G])
5: if ∃W = (V/X )/An(Y )GX

such thatW ≠ ∅ then
6: Return ID(y ,x ∪w ,P,G)
7: if C(G/X ) = {S1,⋯,Sk} (for k ≥ 2) then
8: Return ∑V/(y∪x)∏i ID(si ,v/si , Pr(v),G)
9: else if C(G/X ) = {S} then

10: if C(G) = {G} then
11: Return FAIL(G,S)
12: if S ∈ C(G) then
13: Return ∑s∖y ∏Vi∈S Pr(vi ∣v(i−1)

π )
14: if ∃S′,S ⊆ S′ ∈ C(G) then
15: Return ID(y ,x ∩S′,∏Vi∈S′ Pr(Vi ∣ V (i−1)

π ∩S′,v(i−1)
π /S′),S′)

Trivial
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ID algorithm
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π /S′),S′)

Proof in (Shpitser and Pearl, 2006)
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Completeness of ID algorithm

Theorem (Soudness of the ID algorithm) Whenever the ID
algorithm returns an expression for Pr(y ∣ do(x)), it is correct.

Partially proved in the previous slides.

Theorem (Completeness of ID algorithm) ID is complete.

Proof in (Shpitser and Pearl, 2006)
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Conclusion

▸ do calculus is complete;

▸ The ID algorithm is complete.
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Some extensions

▸ The IDC algorithm that support conditioning;

▸ Finding optimal adjustment sets;

▸ Identifiability for direct effects and indirect effects.

Assaad, Devijver, Gaussier Do-calculus 33 / 43



Some extensions

▸ The IDC algorithm that support conditioning;

▸ Finding optimal adjustment sets;

▸ Identifiability for direct effects and indirect effects.

Assaad, Devijver, Gaussier Do-calculus 33 / 43



Some extensions

▸ The IDC algorithm that support conditioning;

▸ Finding optimal adjustment sets;

▸ Identifiability for direct effects and indirect effects.

Assaad, Devijver, Gaussier Do-calculus 33 / 43



References

Direct inspirations

1. Causal diagrams for empirical research, J. Pearl. Biometrika,
1995

2. Identification of Joint Interventional Distributions in Recursive
Semi-Markovian Causal Models, I. Shpitser, J. Pearl.
Proceedings of the Twenty National Conference on Artificial
Intelligence, 2006

3. Complete Identification Methods for the Causal Hierarchy, I.
Shpitser, J. Pearl. Journal of Machine Learning Research, 2008

4. Studies in Causal Reasoning and Learning, J. Tian. PhD thesis,
2002

5. Causality, J. Pearl. Cambridge University Press, 2nd edition,
2009

Assaad, Devijver, Gaussier Do-calculus 34 / 43



Exercise 1.1

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(y ∣ do(r))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.
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Exercise 1.2

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(r ∣ do(y))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.

Assaad, Devijver, Gaussier Do-calculus 36 / 43



Exercise 1.3

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(y ∣ do(r),do(s))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.
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Exercise 1.4

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(r ∣ do(x),do(z))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.

Assaad, Devijver, Gaussier Do-calculus 38 / 43



Exercise 1.5

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(s ∣ do(x),do(z))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.
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Exercise 1.6

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(r ,s ∣ do(x),do(z))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.
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Exercise 1.7

Consider the following semi-Markovian model:

X

R

Z

S

Y

Test, using do-calculus, whether the causal effect

P(y ∣ do(x),do(z))

is identifiable. If the answer is yes, provide an expression for it
that does not contain the do() operator.
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Exercise 2

Which of the following semi-Markovian models admet an
identifiable causal effect Pr(y ∣ do(x))?

X

Z

Y X

Z

Y

X

Z1

Y

Z2

X

Z1

Y

Z2

X

R

Z

S

Y
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Exercise 3

Consider the following semi-Markovian model containing a
hedge for Pr(y ∣ do(x)):

W1 Y1

W2 Y2

X

▸ Is it possible to remove the hedge by adding one directed
edge to the graph? If yes, which one?

▸ Is it possible to remove the hedge by deleting one directed
edge from the graph? If yes, which one?
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