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Counterfactuals
I took an aspirin, and my
headache is gone: would
I have had a headache
had I not taken that as-
pirin?

Interventions
It I take an aspirin now,
will I wake up with a
headache?
P(headache|do(aspirin))

Associations
I took an aspirin after din-
ner, will I wake up with a
headache?
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Potential Outcomes (PO)

▸ Set of n units indexed by i (individuals)
▸ Ti be the value of a treatment assigned to individual i

Definition (Potential outcomes)

The potential outcome under treatment level t , denoted by
Yi(t), is the value that the outcome would have taken were Ti
set to t , possibly contrary to the fact.

▸ For binary Ti , Yi(0) is the potential outcome if the unit i
does not receive the treatment (control), and Yi(1) is the
potential outcome if the unit i does receive the treatment
(treated).
▸ Treatment Group: The group of subjects or units that

receive the specific intervention or treatment being studied.
▸ Control Group: The group of subjects or units that do not

receive the treatment, serving as a comparison to assess
the treatment’s effectiveness.
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Potential Outcomes (Contd.)

Key Points about Potential Outcomes:
▸ Fundamental for understanding causal effects and

comparing the effects of interventions.
▸ Crucial for estimating the impact of treatments or

interventions in causal inference studies.
▸ Potential outcomes enable us to translate causal questions

into the estimation of a causal estimand.
History of the concept
▸ Started from Neyman (1923) and Fisher’s (1935) work on

understanding experiments
▸ Formalized by Rubin in a series of papers (from 1974)
▸ Potential outcomes has evolved into an entire framework

for causal inquiry.
Can be seen as an alternative way to express counterfactuals
by the do operator (Pearl, 2000).
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Example of Treatment and Control Groups

Illustrative Example:
▸ Consider a clinical trial evaluating the effectiveness of a

new drug for a specific medical condition.
▸ The patients receiving the actual drug constitute the

treatment group, while those receiving a placebo or
standard treatment form the control group.

▸ By comparing the outcomes between the two groups,
researchers can assess the causal impact of the new drug
on the patients’ health outcomes.
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Counterfactuals for Estimating Causal Effects

Using Counterfactuals to Estimate Causal Effects:
▸ Counterfactuals provide a hypothetical comparison of what

would have happened under different treatment conditions.
▸ Used to estimate the causal effect of an intervention by

comparing the observed outcome with the hypothetical
outcome that would have occurred without the intervention.

Application of Counterfactuals in Causal Inference:
▸ Essential for determining the causal impact of treatments,

policies, or interventions in observational and experimental
studies.

▸ Enable researchers to evaluate the effectiveness of
interventions by comparing the actual outcomes with the
hypothetical outcomes in the absence of the intervention.
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Illustrative Example: Counterfactuals in a Study

Example Scenario:
▸ Consider a study evaluating the impact of a new teaching

method on student performance in a particular subject.
▸ The counterfactual comparison involves assessing the

performance of students who received the new teaching
method with the hypothetical performance they would have
had if they had not received the new method.

▸ By comparing the actual performance with the hypothetical
performance, researchers can estimate the causal effect of
the new teaching method on student achievement.
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Individual Treatment Effect (ITE)

Represents the causal effect of a treatment or intervention on
an individual unit within a study.

Definition (ITE)

For each individual i ,

ITEi = Y1i −Y0i

where:
▸ ITEi is the Individual Treatment Effect for the i th unit,
▸ Y1i is the PO for the i th unit under the treatment,
▸ Y0i is the PO for the i th unit under the control.

We can consider other quantities (ratio, percentage increase...)
but always some contrast measure between two POs.
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The fundamental Problem of Causal Inference

▸ Can we do something to estimate the ITE?
▸ The fundamental Problem of Causal Inference (Holland,

1986)
It is impossible to observe the value of Yi(1) and Yi(0) for
the same unit, therefore it is impossible to observe the ITE.
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Average Treatment Effect (ATE)

▸ Represents the average causal effect of a treatment or
intervention on the outcome variable within a population.

▸ Provides an overall assessment of the treatment’s impact
on the entire population under study.

Definition (ATE)

ATE = E[Y1 −Y0]

where:
▸ Y1 is the potential outcome under the treatment,
▸ Y0 is the potential outcome under the control,
▸ E[⋅] denotes the expectation or average over the entire

population.
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Differences between ATE and ITE

Distinguishing ATE and ITE:
▸ ATE provides the average treatment effect for the entire

study population, while ITE focuses on the specific effects
for individual units.

▸ ATE assesses the overall impact of a treatment at a
population level, while ITE emphasizes individual-level
variations in treatment effects.

▸ ATE is used for evaluating the general effectiveness of
interventions, whereas ITE is crucial for understanding
personalized treatment effects.
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Example of Average Treatment Effect (ATE)

Real-World Scenario:
▸ A study assessing the impact of a new educational

program on student performance.
▸ ATE is calculated by comparing the average test scores of

students who participated in the program with those who
did not. We need assumptions here!

▸ The difference in average scores provides an estimate of
the average effect of the educational program on the
overall student population.
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Example of Individual Treatment Effect (ITE)

Real-World Scenario:
▸ A clinical trial investigating the efficacy of a new drug for a

specific medical condition in a diverse patient population.
▸ ITE is computed by analyzing the individual response to

the drug compared to the response they would have had
without the treatment.

▸ The variation in treatment effects among different patient
subgroups helps in identifying specific patient
characteristics that influence the drug’s effectiveness.
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Real-World Examples of Treatment Effects (Contd.)

Key Takeaways from Real-World Examples:
▸ ATE provides insights into the overall impact of

interventions on a study population, guiding policy and
program decisions.

▸ ITE helps in understanding the heterogeneous responses
to treatments among individuals, enabling personalized
treatment strategies and interventions.
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How to estimate ATE?

▸ Hypothetical world: we observe every potential outcome
for every individual.

▸ In reality: we observe one (at most) for each individual.

Can we average the observations from control and treatment?
Yes but under very stringent assumptions!
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Assumptions
SUTVA

Definition (SUTVA: Stable Unit Treatment Value
Assumption)

Observed outcome = potential outcome of the observed
treatment: Yi(t) = Yi if Ti = t .

For a binary treatment, this writes

Yi = Yi(1) ×Ti +Yi(0)× (1−Ti)

▸ No interference: manipulating another unit’s tratment does
not affect a unit’s PO

▸ Consistency: for each unit, no different form or version of
each treatment level, which lead to different PO
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Assumptions
Positivity and ignorability

Definition
Positivity: we assume that, for all units i and treatment levels t ,

P(Ti = t) > 0

Ignorability: we assume that, for all treatment levels, t ,

Yi(t) ⊥⊥ Ti

This means that the average outcome in the treated group is
representative of what we would see on average if everyone got
treated (same for the controls).

E(Yi(1)) = E(Yi(1)∣Ti = 1) = E(Yi(1)∣Ti = 0)
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First estimator of ATE

Under SUTVA, positivity, ignorability,

E(Yi ∣Ti = 1)−E(Yi ∣Ti = 0) = E(Yi(1)∣ Ti = 1)−E(Yi(0)∣Ti = 0)
= E(Yi(1))−E(Yi(0))
= ATE

Sample means estimator

ÂTE = 1
nt

n
∑
i=1

YiTi −
1
nc

n
∑
i=1

Yi(1−Ti)

Estimator unbiased, consistent and asymptotically gaussian.
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Randomized Controlled Trials (RCTs)

The easiest way to collect data that satisfies those assumptions
is to perform a randomized experiment.

Definition (Randomized Experiment)

An experiment is a study in which the probability of treatment
assignment P(Ti = t) is directly under the control of a
researcher.

Definition and Application:
▸ RCTs are experimental studies where participants are

randomly assigned to either the treatment or control group.
▸ They are considered the gold standard for estimating

causal effects as randomization helps control for both
observed and unobserved confounding variables.

Challenges: non-compliance, arm switches, ...
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Randomized Controlled Trials (RCTs)

Example:
▸ Clinical trials for testing the efficacy of a new drug in a

controlled setting.
▸ Analyzing the impact of a policy change on employment

using survey data and statistical controls.
Drawbacks: not always possible (unethical, need for a large
sample size, bias in population selection, lack of follow-up...)
Challenges and Solutions:
▸ Observational studies use data from naturally occurring

settings and are prone to confounding and bias.
▸ Techniques such as multivariate regression, stratification,

and sensitivity analysis help control for confounding factors
and improve causal inference from observational data.

Assaad, Devijver, Gaussier Estimating causal effects 21 / 46



Randomized Controlled Trials (RCTs)

Example:
▸ Clinical trials for testing the efficacy of a new drug in a

controlled setting.
▸ Analyzing the impact of a policy change on employment

using survey data and statistical controls.
Drawbacks: not always possible (unethical, need for a large
sample size, bias in population selection, lack of follow-up...)
Challenges and Solutions:
▸ Observational studies use data from naturally occurring

settings and are prone to confounding and bias.
▸ Techniques such as multivariate regression, stratification,

and sensitivity analysis help control for confounding factors
and improve causal inference from observational data.

Assaad, Devijver, Gaussier Estimating causal effects 21 / 46



Randomized Controlled Trials (RCTs)

Example:
▸ Clinical trials for testing the efficacy of a new drug in a

controlled setting.
▸ Analyzing the impact of a policy change on employment

using survey data and statistical controls.
Drawbacks: not always possible (unethical, need for a large
sample size, bias in population selection, lack of follow-up...)
Challenges and Solutions:
▸ Observational studies use data from naturally occurring

settings and are prone to confounding and bias.
▸ Techniques such as multivariate regression, stratification,

and sensitivity analysis help control for confounding factors
and improve causal inference from observational data.

Assaad, Devijver, Gaussier Estimating causal effects 21 / 46



Another set of assumptions

Definition
Conditional positivity: we assume that, for all units i and
treatment levels t ,

P(Ti = t ∣Xi = x) > 0

for all x in the domain.
Conditional ignorability: we assume that
Yi(1),Yi(0) ⊥⊥ Ti ∣Xi = x for all x and t .

▸ Knowing a unit’s covariate values will never determine
what treatment that unit gets with certainty

▸ The covariate tell the whole story of the treatment
assignment process, and within levels of Xi , treatment is
assigned as-if-random.

How to pick the good set of covariates?
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How to pick the good set of covariates?

It comes back to the causal graph!
We look for variables that
▸ block all non-causal paths from T to Y
▸ let all causal paths from T to Y open.

X

YT

M
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Setting on observational dataset

▸ Dataset (Ti ,Yi ,Xi)1≤i≤n

▸ Assumptions: SUTVA, conditional ignorability wrt X ,
conditional positivity wrt X
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Post-stratification

▸ Within strate, we can identify the ATE by the
difference-in-means

▸ CATE(x) = E(Y (1)−Y (0)∣X = x)
▸ Come back to ATE:

E(Y (1)−Y (0))
=E(E(Y (1)−Y (0)∣X))
=∑

x
(E(Y ∣T = 1,X = x)−E(Y ∣T = 0,X = x))P(X = x)

estimated by
ÂTE =∑

x
ĈATE(x)nx

n

Drawbacks:
▸ If too many strates, too few units in each strate
▸ continuous covariates...
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Inverse Probability of Treatment Weighting (IPTW)

Fact: in a randomized experiment, covariate distribution are
balanced across treatment groups, but not in observational
studies.

ÂTE = 1
n

n
∑
i=1

wi(YiTi −Yi(1−Ti))

Which weight?

Definition (Propensity score)

The propensity score is the probability of receiving the
treatment:

e(x) = P(T = 1∣X = x)

IPTW (or Horowitz-Thompson estimator): weighted estimator
with wi = (e(Xi))−1 for treated units and wi = (1− e(Xi))−1 for
control units
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Estimating the Propensity Score

Logistic Regression Formula:

logit(e) = β0 + β1X1 + β2X2 + . . . + βpXp

Where:
▸ e represents the estimated propensity score,
▸ X1,X2, . . . ,Xp represent the observed covariates or

confounding variables,
▸ β0, β1, . . . , βp are the coefficients of the logistic regression

model.
The estimated propensity scores are used in the matching
process to create balanced groups for comparison and
analysis.
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Estimating the propensity score

More recently, many more ML methods
▸ Boosting
▸ NN
▸ RF
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Matching

Definition and Application: how to fill in the missing outcome
for each unit?
▸ Propensity score matching is used to estimate the causal

effect of a treatment or intervention by balancing the
distribution of observed covariates between the treatment
and control groups.

▸ It involves matching treated and untreated units

Definition (Matching)

For each unit i , find the unit j with opposite treatment and most
similar covariate values and use their outcome as the missing
one for i .

Which similarity? Euclidian, propensity score-based, ...
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Example in Social Sciences

Research Question: Does participation in a mentoring
program improve academic performance in at-risk students?
Propensity Score Matching Process:

1. Collect demographic data, socioeconomic background,
and previous academic performance of at-risk students.

2. Estimate the propensity scores using logistic regression,
considering relevant covariates.

3. Match treated students who participated in the mentoring
program with similar untreated students who did not
participate, based on their propensity scores.

4. Compare the academic performance of the matched
groups to evaluate the impact of the mentoring program on
the students’ academic outcomes.
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Regression-based methods

We blocked the non-causal open path from T to Y by adjusting
on X .
How to model the relationship between Yi(t) and Xi?
Regression model:

E(Yi ∣Ti ,Xi) = α + βTi +Xi γ

Do β̂ is an estimate of the treatment effect?
Only if (the model is correctly specified and) the treatment effect
is constant across units → homogeneous treatment effect

Heterogeneous treatment effect

E(Yi ∣Ti ,Xi) = α + βTi +Xi γ +TiXi λ

Then ATE = β +E(Xi)λ.
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Regression-based methods

ATE = β +E(Xi)λ

One would like E(Xi) = 0: de-meaning covariates
Then in very specific cases with very strong assumptions, you
can express the ATE with the regression coefficients!

Other solution:

S-learner µ(t ,x) = E(Y ∣T = t ,X = x)
T-learner µ(1,x) = E(Y ∣T = 1,X = x)

µ(0,x) = E(Y ∣T = 0,X = x)
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Double robustness

▸ Most estimator (IPTW, S-learner, T-learner) are sensitive to
model misspecification

▸ Doubly robust estimator: combine them! For example,
augmented IPW:

ÂTE = 1
n

n
∑
i=1

µ̂(1)(Xi)− µ̂(0)(Xi)

+Ti
Yi − µ̂(1)(Xi)

ê(Xi)
− (1−Ti)

Yi − µ̂(0)(Xi)
1− ê(Xi)

▸ Even with double robustness, needs of correct specification
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Double Machine Learning

Y = g0(T ,X)+U
ATE = E(g0(1,X)− g0(0,X))

g0 is learnt by ML
▸ flexibility,
▸ heterogenous treatment effects,
▸ high dimensional X

1st method
1. ĝ0 using ML
2. plug in predictions to estimate ATE

Caution! ML methods address the variance-bias trade-off,
which leads to a bias of the causal estimate
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Double Machine Learning

Definition (Neyman Orthogonality)

The error terms that arise due to regularization do not affect the
causal estimate. For ψ a score function, D a dataset, η the
nuisance part,

E(ψ(D;ATE, η)) = 0.

Sample splitting: split the sample into two parts: one for the
ML estimation, one for the causal estimation ATE.

Theorem
Central limit theorem for the double ML estimator under
regularity conditions with known covariance matrix.
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Causal forest

▸ A causal tree is constructing leaves such that the
individuals i come from a randomized experiment. Then,
sum over the leaves.

▸ Causal forest: ensemble of causal trees
▸ This is a consistent estimator of CATE
▸ Variable importance deduced from causal RFs
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Unmeasured confounding

If we suspect some unmeasured confounding,
▸ Conditional ignorability does not hold with respect to X
▸ We assume that there is an unmeasured variable U such

that conditional ignorability hold with respect to X and U

X

YT

U
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Instrumental Variable Analysis

Definition and Application:
▸ Instrumental variables IV: correlated with the treatment but

not directly associated with the outcome, allowing for the
estimation of causal effects in the presence of unobserved
biases.

▸ Key aspect of an IV: should be strongly correlated with the
endogenous variable (X) but uncorrelated with the error
term and any unobserved confounders (Z). This helps
address potential issues of endogeneity and omitted
variable bias, improving the validity of your causal
inference.

▸ In other words: we want to split the variation in Xi that is
uncorrelated with the noise, to estimate the causal effect.
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Instrumental Variable Analysis

Definition (Instrumental Variable)

An instrumental variable IV must satisfy three conditions:
1. Relevance IV has a causal effect on T
2. Exclusion restriction the causal effect of IV on Y is fully

mediated by Y
3. Instrumental unconfoundedness The relationship

between IV and Y is unconfounded of confounded only by
variables we measure and can adjust on.

T Y

Z

IV
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Instrumental Variable Analysis

Estimation through IV
Under the linear model,

Z = εZ

IV = εIV

T = βz,tZ + βiv ,t IV + εT

Y = βz,yZ + βt ,yT + εY .

Rewriting the equation, we can identify βt ,y through the
estimation of two linear regressions.
Two-stage least squares estimator (2SLS estimator)
Caution! this can have large variance if the value βIV ,T is near
zero. In such cases, IV is called a weak instrument.
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Example in Social Sciences

Research Question: Does increased spending on education
lead to improved long-term economic outcomes for individuals?
Instrumental Variable Analysis Process:

1. Identify an instrumental variable, such as a policy change
affecting education spending at the regional level.

2. Verify that the instrumental variable is correlated with
education spending but not directly associated with
individual economic outcomes.

3. Use the instrumental variable to estimate the causal effect
of education spending on long-term economic outcomes,
addressing the endogeneity issue.
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Differences-in-Differences (Diff-in-Diff)

▸ Diff-in-Diff is a quasi-experimental technique that
compares the changes in outcomes between a treatment
group and a control group before and after an intervention.

▸ It helps estimate the causal effect of the intervention by
accounting for the common time-related trends in both
groups.

▸ The method is widely used in economics, public policy, and
social sciences to evaluate the impact of policy changes
and interventions.

Assumptions
▸ SUTVA at both time points
▸ Parallel trend assumption (Y1(0)−Y0(0)) ⊥⊥ T
▸ No pre-treatment effect assumption:

E(Y0(1)∣T = 1) = E(Y0(0)∣T = 1)
▸ We can identify the average treatment effect in the treated
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Differences-in-Differences (Diff-in-Diff) Method
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Differences-in-Differences (Diff-in-Diff) Method

Consider the following model:

Yit = β0 + β1 ⋅Ti + β2 ⋅Postt + β3 ⋅ (Ti ×Postt)+ εit

where:
▸ Yit represents the outcome variable for unit i at time t ,
▸ Ti is a dummy variable for the treatment group,
▸ Postt is a dummy variable for the post-treatment period,
▸ β0, β1, β2, and β3 are the regression coefficients,
▸ εit is the error term.

The Diff-in-Diff method allows the estimation of the causal
effect by comparing the differential changes in the outcome
variable over time between the treatment and control groups
before and after the treatment implementation.
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Example in Social Sciences

Research Question: What is the impact of a minimum wage
increase on employment in a specific industry?
Diff-in-Diff Analysis Process:

1. Select treatment and control groups from the same
industry.

2. Analyze the employment trends before and after the
minimum wage increase in both groups.

3. Compare the differences in employment changes between
the treatment and control groups to estimate the causal
effect of the policy change.
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Sum up

▸ Causal sufficiency
▸ Under SUTVA, positivity, ignorability: sample means

estimator

ÂTE = 1
nt

n
∑
i=1

YiTi −
1
nc

n
∑
i=1

Yi(1−Ti)

▸ When those assumptions hold? ... only RCTs ...
▸ Lightning assumptions: SUTVA, conditional positivity,

conditional ignorability, wrt backdoor/frontdoor set
▸ Post-stratification:
▸ IPTW: propensity score as weights,
▸ Matching
▸ Regression-based methods - double ML

▸ Hidden confounders
▸ Instrumental variable analysis
▸ Differences in differences
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