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Infer a causal graph from observed data following a Bayesian
approach
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Bayesian network models and DAG models

Parametrized Bayesian-network model A pair (G,θ) where
G = (V,E) is a DAG in which nodes correspond to variables and
θ is a set of parameter values that specify all conditional
probability distributions (θi ⊂ θ subset of parameter values that
define the conditional probability of Xi given its parents in G)

P(X1 = x1, ...,Xn = xn) =
n
∏
i=1

P(Xi = xi ∣PaGi = paGi ,θi) (1)

▸ The structure G is a DAG model that represents the
independence constraints that must hold in any distribution
represented by the network

▸ The set of independence constraints imposed by G are
represented by the Markov conditions (independence of
non-descendants given parents)

Complete network
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Remark: Markov conditions vs faithfulness

Markov conditions Prob. distribution

absent edge ⇒ conditional independence

see conditional dependence ⇒ infer edge

Faithfulness Prob. distribution

edge ⇒ conditional dependence

see conditional independence ⇒ absent edge
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Bayesian-network learning problem (1)

Learning one or more DAG models that fit a set of observed
data D well according to some scoring criterion S(G,D)

Hypothesis Gh for G The observed data is a set of iid samples
from a distribution that contains exactly the independence
constraints implied by G

Z

X

Y

Z

X

Y

Same hypothesis
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Bayesian-network learning problem (2)

Learning one or more DAG models that fit a set of observed
data D well according to some scoring criterion S(G,D)

Hypothesis Gh for G The observed data is a set of iid samples
from a distribution that contains exactly the independence
constraints implied by G (perfect map)

Perfect map We say that G is a perfect map of P if every
independence constraint in P is implied by G and every
independence implied by G holds in P. In this case, P is
DAG-perfect
Assumption Each record in D is an iid sample from a
DAG-perfect probability distribution
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Bayesian-network learning problem (4)

Our goal is to infer from observed data the equivalence class of
the perfect map using a scoring criterion S(G,D)

Our goal is to infer from observed data the equivalence class of
the perfect map using a scoring criterion S(G,D)
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Bayesian scoring criterion

Bayesian scoring criterion: SB(G,D) = logP(Gh) + logP(D ∣ Gh)

▸ P(Gh): prior probability of Gh

▸ P(D ∣ Gh): marginal likelihood obtained by integrating over
the unknown parameters the likelihood function (Eq. 1)
applied to each record in D

Bayesian information criterion (BIC - Schwarz, 1978) Under
some assumptions:

SB(G,D) = logP(D ∣ θ̂,Gh
) −

d
2
logm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BIC

+O(1)

θ̂: maximum-likelihood values of θ; d : number of free
parameters; m: number of records in D; O(1): constant
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Decomposability, local consistency

Decomposability A scoring S(G,D) is decomposable if
S(G,D) = ∑n

i=1 s(Xi ,PaGi )

Is the Bayesian scoring criterion decomposable?

Local consistency Let D be m iid samples from distribution P, G
be any DAG and G′ the DAG obtained from G by adding the
edge Xi → Xj . A scoring S(G,D) is locally consistent if the
following properties hold:

1. If Xj /⊥⊥P Xi ∣PaGj , then S(G′,D) > S(G,D)

2. If Xj ⊥⊥P Xi ∣PaGj , then S(G′,D) < S(G,D)

The Bayesian scoring criterion is locally consistent
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Implications

During the construction of graph inferred from data:

▸ Bayesian scoring criterion favours addition of edges that
eliminate independence constraints not contained in the
generative distribution

▸ Bayesian scoring criterion favours deletion of any
unnecessary edge
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Markov equivalence

Theorem (Markov equivalence) Two DAGs are equivalent iff
they have the same skeleton and the same v-structures
▸ Markov equivalence defines an equivalence relation

(reflexive, symmetric, transitive)
▸ Equivalence class of G: E(G)

Covered edges An edge X → Y is covered in G if
Pa(Y ) = Pa(X) ∪X

Lemma (Chickering, 1995) Let G be a DAG and let G′ the result
of reversing the edge X → Y in G. G and G′ are equivalent iff
X → Y is covered in G

Charles K. Assaad, Emilie Devijver, Eric Gaussier Causal discovery (cont’d) 15



Markov equivalence

Theorem (Markov equivalence) Two DAGs are equivalent iff
they have the same skeleton and the same v-structures
▸ Markov equivalence defines an equivalence relation

(reflexive, symmetric, transitive)
▸ Equivalence class of G: E(G)

Covered edges An edge X → Y is covered in G if
Pa(Y ) = Pa(X) ∪X

Lemma (Chickering, 1995) Let G be a DAG and let G′ the result
of reversing the edge X → Y in G. G and G′ are equivalent iff
X → Y is covered in G

Charles K. Assaad, Emilie Devijver, Eric Gaussier Causal discovery (cont’d) 15



Markov equivalence

Theorem (Markov equivalence) Two DAGs are equivalent iff
they have the same skeleton and the same v-structures
▸ Markov equivalence defines an equivalence relation

(reflexive, symmetric, transitive)
▸ Equivalence class of G: E(G)

Covered edges An edge X → Y is covered in G if
Pa(Y ) = Pa(X) ∪X

Lemma (Chickering, 1995) Let G be a DAG and let G′ the result
of reversing the edge X → Y in G. G and G′ are equivalent iff
X → Y is covered in G

Charles K. Assaad, Emilie Devijver, Eric Gaussier Causal discovery (cont’d) 15



Markov equivalence (cont’d)

CPDAG: completed PDAG; PDAG: partially DAG
CPDAG of an equivalence class The CPDAG of an equivalence
class consists of a directed edge for every compelled edge, and
an undirected edge for every reversible edge (compelled: exists
in all graphs of the equivalence class; reversible: not
compelled)

What’s the CPDAG of the equivalence class of the following
DAG?

X Y

U Z

W
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Fundamental result and neighbour classes

Remark If G and H are in the same equivalence class, then
Gh = Hh and SB(G,D) = SB(H,D) ∶= SB(E(G),D)

Proposition Let E∗ denote the equivalence class that is a perfect
map of distribution P, and let m be the number of records in D.
Then in the limit of large m, SB(E

∗,D) > SB(E ,D) for E ≠ E∗

Neighbour classes E ′ ∈ E+(E) iff one can transform any DAG G
in E to any DAG G′ in E ′ through a sequence of covered edge
reversals followed by a single edge addition followed by a
sequence of covered edge reversals (same definition for E−(E)
with a single edge deletion)
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Example

What are the equivalence class E = E(G), E+(E) and E−(E) of
the following graph G?

A

B C
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GES: greedy equivalence search

GES algorithm
1. Initialisation: set E to the equivalence class corresponding

to the DAG with no edge
2. Repeatedly replace E with the member of E+(E) that has

the highest score, until no such replacement increases the
score

3. Repeatedly replace E with the member of E−(E) that has
the highest score, until no such replacement increases the
score

4. Output the current class E

Consistency of GES Let E denote the equivalence class that
results from GES, let P denote the DAG-perfect distribution
associated with D, and let m denote the number of records in
D. Then in the limit of large m, E is a perfect map of P

Charles K. Assaad, Emilie Devijver, Eric Gaussier Causal discovery (cont’d) 20
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Remarks

1. Well-founded algorithm with consistency proof first
established by Meek (Meek, 1997) based on a conjecture
proven by Chickering (Chickering, 2002)

2. Main disadvantage: computational complexity
▸ Learning optimal structure with Bayesian scoring criterion is

NP-hard (Chickering, 1996)
▸ Fast implementations exist when the underlying graph is

sparse (Chickering, 2020)

3. Another (faster) approach exists based on the EM
(expectation-maximisation) algorithm called MS-EM for
model selection EM described in (Friedman, 1997)

4. Several other extensions for different data types, e.g. for
time series (Assaad et al., 2022)
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Causality according to Granger

Granger causality A time series X p Granger-causes X q if past
values of X p provide unique, statistically significant information
about future values of X q

Standard pariwise version Under the assumption of stationary
linear systems, one considers the following autoregression
models:

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i + ξq

t (Mres)

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i +

τ

∑
i=1

ap,iX
p
t−i + ξq

t (Mfull)

ξq
t are uncorrelated rand. var. with 0 mean, a are real

coefficients, and τ optimal lag
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Causality according to Granger (cont’d)

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i + ξq

t (Mres)

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i +

τ

∑
i=1

ap,iX
p
t−i + ξq

t (Mfull)

If the full model is significantly more accurate than the
restricted model, one concludes that X p Granger-causes X q

Remarks
▸ Statistical test such as the F -test can be used to determine

whether the full model is significantly better than the
restricted one (null hypothesis: X p does not
Granger-cause X q)

▸ Optimal lag τ estimated using an information criterion, as
AIC (Akaike information criterion) or BIC
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Associated algorithm

input X a d-dimensional time series, τmax ∈ N optimal lag
initialisation Form an empty graph G with d nodes V
Standardize data and check if it is covariance stationary
for X q ∈ V do

Fit Mres and compute its residuals
for X p ∈ V ∖ {X q} do

Fit Mfull and compute its residuals
Compare Mres and Mfull
if null hypothesis rejected then add X p → X q to G

return G
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Multivariate extension

X
q
t = aq,0 +

d
∑
r=1
r≠p

τ

∑
i=1

ar ,iX
p
t−i + ξq

t (mvMres)

X
q
t = aq,0 +

d
∑
r=1

τ

∑
i=1

ar ,iX
r
t−i + ξq

t (mvMfull)

If the full model is significantly more accurate than the restricted
model (through a statistical test), X p Granger-causes X q

Remarks
▸ Yields better results than previous version
▸ Computationally costly so that people mostly rely on

pairwise version
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Other extensions

Several other extensions have been proposed (Assaad et al.,
2022), including

▸ Dealing with non-stationary processes (Luo et al., 2015)
▸ Using deep learning to learn complex, non linear relations

(Nauta et al., 2019)

Granger causality is not causality: no explicit way to distinguish
causal relations from spurious correlations
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Conclusion

We have reviewed the major methods for causal discovery
▸ Constraint-based methods
▸ Noise-based methods
▸ Score-based methods
▸ Granger causality

Other methods exist but are less used: logic-based
approaches, topology-based approaches (not true causality),
difference-based approaches (Assaad et al., 2022)
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Next courses

Data Causal graph

Causal discovery

Causal reasoning
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