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Recap about structural causal models (1/2)

V = {X1,X2, . . . ,Xn} set of endogenous variables
U = {ξ1, ξ2, . . . , ξn} corresponding set of exogenous variables.

Suppose that each endogenous variable Xi is a function of its
parents in V together with ξi :

Xi = fi(Parents(Xi), ξi).

Graphical representation is including only the endogenous
variables V , and we use Parents(Xi) to denote the set of
endogenous parents of Xi .
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Recap about structural causal models (2/2)

Independent Mechanism Principle
In the probabilistic case, the conditional distribution of each
variable given its causes (i.e., its mechanism) does not inform
or influence the other conditional distributions.
▸ Independence of noises, conditional independence of

structures
▸ Independence of information contained in mechanisms

If the system of equations is acyclic, an assignment of values to
the exogenous variables ξ1, ξ2, . . . , ξn uniquely determines the
values of all the variables in the model. Then, if we have a
probability distribution P′ over the values of variables in ξ , this
will induce a unique probability distribution P on V .
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Recap: Constraint-based

▸ Independence based algorithm to infer the causal graph
▸ Need to test independence → need of large sample size
▸ Faithfulness
▸ Identify the Markov equivalence class

Can we do better than identify the Markov equivalence
class?
Not without parametric assumptions!
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Example with two nodes

Consider two variables X and Y, and assume we have infinite
data and can deduce the joint distribution.

X → Y or Y → X

Markov equivalence class: X −Y
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Non-identifiability of two-node graphs

Proposition (Peters et al., 2017, p44)

For every joint distribution P(x ,y) on two real-valued random
variables, there is an SCM in either direction that generates
data consistent with P(x ,y).
Mathematically, there exists a function fY such that

Y = fY (X ,UY ),X ⊥⊥ UY

and there exists a function fX such that

X = fX (Y ,UX ),Y ⊥⊥ UX

where UY and UX are real-valued random variables.
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Non-identifiability
Ex from Hoyer et al. (2008)

The Markov equivalence class is the best we can do!
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Non-identifiability
Multinomial or Gaussian distribution

Theorem (Markov Completeness, Meek (1995), Geiger
and Pearl (1988))

If we have multinomial distributions or linear Gaussian
structural equations, we can only identify a graph up to its
Markov equivalence class.
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The intuition behind the noise

Suppose
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= 2X + ξy

Given P(X ,Y ), one can detect X −Y but what about
orientation?

Y ∶= 2X + ξy or X ∶= Y
2
+ ξx ?

Assume that the noise follow a uniform distribution on {−1,0,1}
X Y ξy = Y − 2X ξx = X −Y /2
1 2 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
3 6 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
4 9 1 ∈ {−1,0,1} −0.5 /∈ {−1,0,1}
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The linear case

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= aX + ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξx ?

Backwards model:

X Y

ξx ξy

M2 ∶
⎧⎪⎪⎨⎪⎪⎩

Y ∶= ξy

X ∶= bY + ξx

ξx = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy
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The linear case

Y = aX + ξy

ξx = (1− ba)X − bξy

When Y ⊥⊥P ξx ?

Theorem (Darmois-Skitovich, 1953, 1954)

Let X1,⋯,Xn be independent, non degenerate random
variables. If for two linear combinations:

l1 = a1X1 +⋯+ anXn

l2 = b1X1 +⋯+ bnXn

are independent, then each Xi is normally distributed.
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The linear non gaussian case

Theorem (Identifiability of linear non-Gaussian models)

Assume that P(X ,Y ) admits the linear model

Y ∶= aX + ξy , X ⊥⊥P ξy ,

with continuous random variables X, ξy , and Y . Then there
exists b ∈ R and a random variable ξx such that

X ∶= bY + ξx , Y ⊥⊥P ξx ,

if and only if ξy and X are Gaussian.
It can be extended to multiple variables (see Shimizu et al.
(2006), Peters et al. (2017)).
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The linear non gaussian case

Example:

X ∼ U(0,1)
ξy ∼ U(0,1)
Y ∶= 2X + ξy
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The linear non gaussian case
Ex from Hoyer et al. (2008)
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The non linear ANM case

Continuous additive noise models

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= fy(X)+ ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξx ?
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The non linear ANM case

Theorem (Identifiability of additive noise models, Hoyer et
al, 2008)

Assume that P(X ,Y ) admits the non-linear additive noise
model

Y ∶= fy(X)+ ξy , X ⊥⊥P ξy ,

with continuous random variables X, ξy , and Y . Then there
exists fX and random variable ξx such that

X ∶= fx(Y )+ ξx , Y ⊥⊥P ξx ,

if and only if Complicated Condition is satisfied.

Complicated Condition: The triple (fy ,P(X),P(ξy)) solves the
following differential equation for all x ,y with
(logP(ξy))′′(y − fy(x))f ′(x) ≠ 0.
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The non linear case

▸ The space that satisfy the condition is a 3-dimensional
space;
The space of continuous distributions is infinite
dimensional;
Ô⇒ we have identifiability for most distributions.

▸ If the noise is Gaussian, then the only functional form that
satisfies Complicated Condition is linearity.

▸ If the function is linear and the noise is non-Gaussian, then
one can’t fit a linear backwards model but one can fit a
non-linear backwards models.

Be careful! the ANM is not closed under marginalization: with
latent variables, if you assume ANM over X ∪ L, then the
marginal model over X may no longer be in the ANM class.
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The post non linear case

Y ∶= g(fy(X)+ ξy), X ⊥⊥P ξy ,

Zhang and Hyvarinen (2009) have provided conditions under
which this causal model is identifiable.
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Causal order discovery procedure in the bivariate case

Given P(X ,Y ) and a dependence estimator Î
Procedure:

1. Fit f̂Y and f̂X :

X Y Y Xf̂Y f̂X

2. Compute residuals ξ̂Y and ξ̂X :

X Y Y Xf̂Y f̂X

ξ̂Y ξ̂X

3. Order:
▸ T = [X ,Y ] if Î(X , ξ̂Y ) < Î(Y , ξ̂X )
▸ T = [Y ,X ] if Î(Y , ξ̂X ) < Î(X , ξ̂Y )

4. Output (suppose T = [X ,Y ]):
▸ X → Y if X ⊥⊥P ξ̂Y and Y /⊥⊥P ξ̂X
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Assumptions

Causal sufficiency

∀X ← Z → Y , if X ,Y ∈ V then Z ∈ V.

Topological ordering: Consider a causal DAG G = (V,E) and a
topological ordering T = {X1,⋯,Xp}. If Xi → Xj in G then i < j .

Minimality condition A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is
not compatible with any proper subgraph of G.
The graph does not contain dependencies not present in the
observational data.

Remark: under Markov condition, faithfulness Ô⇒ minimality.
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The algorithms

1. Topological ordering
2. Pruning
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The algorithms

Algorithm 1 LiNGAM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V =
{X1,⋯,Xp}

2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for i ∈ S do
6: for j ∈ S/{i} do
7: ξ̂ij = Xj −

cov(Xi ,Xj)
var(Xi)

Xi

8: h = ∑j∈S/{i} Î(Xi , ξ̂ij)
9: H = [H,h]

10: i∗ = arg mini∈S H
11: S = S/{i∗}
12: T = [T , i∗]
13: ∀j ∈ S,Xj = ξ̂i∗j
14: until ∣S∣ = 0
15: Append(T , S0)
16: Construct a strictly lower triangular matrix by

following the order in T , and estimate the con-
nection strengths ai,j by using some conven-
tional covariance-based regression.

17: if ai,j > 0 then
18: Add Xi → Xj to G
19: Return G

Algorithm 2 ANM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V =
{X1,⋯,Xp}

2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for j ∈ S do
6: f̂.j : Regress X j on {Xi}i∈S/{j}
7: ξ̂.j = Xj − f̂.j(Xi)
8: h = Î({Xi}i∈S/{j}, ξ̂.j)
9: H = [H,h]

10: i∗ = arg mini∈S H
11: S = S/{i∗}
12: T = [i∗,T ]
13: until ∣S∣ = 0
14: for j ∈ {2,⋯,p} do
15: for i ∈ {T1,⋯,Tj−1} do
16: f̂.j : Regress X j on {Xk}k∈{T1,⋯,Tj−1}/{i}

17: ξ̂.j = Xj − f̂.j(Xi)
18: if {Xk}k∈{T1,⋯,Tj−1}/{i} /⊥⊥P ξ.j then
19: Add Xi → Xj to G
20: Return G
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ANM in action (1/4)

▸ Suppose the true graph on right;
▸ Assumptions: CMC, minimality, causal

sufficiency.

A

B

D E
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ANM in action (2/4)

▸ Estimate A,B,D ↦ E and
ξ̂e
▸ H1 = Î({A,B,D}, ξ̂e)

▸ Estimate A,D,E ↦ B and
ξ̂b
▸ H3 = Î({A,D,E}, ξ̂b)

▸ Estimate A,B,E ↦ D and
ξ̂d
▸ H2 = Î({A,B,E}, ξ̂d)

▸ Estimate B,D,E ↦ A and
ξ̂a
▸ H4 = Î({B,D,E}, ξ̂a)

4 = Argmin(H)
T = [A]
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ANM in action (3/4)

▸ Estimate B,D ↦ E and ξ̂e

▸ H1 = Î({B,D}, ξ̂e)
▸ Estimate D,E ↦ B and ξ̂b

▸ H3 = Î({D,E}, ξ̂b)

▸ Estimate B,E ↦ D and ξ̂d

▸ H2 = Î({B,E}, ξ̂d)

1 = Argmin(H)
T = [E ,A]

▸ Estimate D ↦ B and ξ̂b
▸ H1 = Î(D, ξ̂b)

▸ Estimate B ↦ D and ξ̂d
▸ H2 = Î(B, ξ̂d)

2 = Argmin(H)
T = [D,E ,A]

T = [B,D,E ,A]
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ANM in action (4/4)

T = [B,D,E ,A]

A

B

D E

A

B

D E

A

B

D E
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Exercise 1

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = a ∗Z + ξx ξx ∼ U(0,1);
Y = b ∗Z + ξy ξy ∼ U(0,1);
W = c ∗X − d ∗Y + ξw ξw ∼ N(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm?
And what about the ANM algorithm?
And what about PC?

Z

X Y

W
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Exercise 2

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = Z 2 + ξx ξx ∼ U(0,1);
Y = Z 3 + ξy ξy ∼ U(0,1);
W = XY + ξw ξw ∼ U(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm? And
what about the ANM algorithm?

Z

X Y

W
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Exercise 3

Why is faithfulness needed for constraint-based methods
whereas noise-based methods only need minimality?
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Conclusion

▸ Noise-based methods can discover the causal graph
▸ Under linear non gaussian models
▸ Under non-linear additive noise models

▸ Advantages:
▸ Can discovery the true graph;
▸ Faithfulness is not needed.

▸ Drawbacks:
▸ Semi parametric assumptions;
▸ Need large sample size.

▸ Extensions
▸ Without causal sufficiency if linear relations;
▸ With cyclic graphs;
▸ Extension to discrete additive noise models;
▸ Time series.
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