Back-door and front-door criterions

Charles K. Assaad, Emilie Devijver, Eric Gaussier

eric.gaussier@univ-grenoble-alpes.fr

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Causal reasoning (1/2)

Counterfactuals

Interventions

Associations

Causal reasoning (2/2)

Causal reasoning (2/2)

Goal: Estimate the causal effect or effect of an intervention.

Causal reasoning (2/2)

Goal: Estimate the causal effect or effect of an intervention.

It is not always possible.

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z.

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d-separated* by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp \!\!\!\perp_{G} \mathcal{Y} \mid \!\!\!\! \mathcal{Z}$.

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z.

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d*-separated by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z}$.

 $Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$ $Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$ The do() operator allows to represent interventions in equations.

 $\Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } \Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$

 $Pr(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$ The do() operator allows to represent interventions in equations.

 $\Pr(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $\Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$

 $\Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } \Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$

The do() operator allows to represent interventions in equations.

 $\Pr(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $\Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$

 $\Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } \Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$

The do() operator allows to represent interventions in equations.

Bayesian network factorization:

$$\Pr(V_1 = v_1, \dots, V_d = v_d) = \prod_i \Pr(V_i = v_i \mid Parents(V_i))$$

Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(V_i = v_i \mid Parents(V_i))$$

if v_1, \dots, v_d are values consistent with the intervention, else,

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = 0$$

Bayesian network factorization:

$$\Pr(V_1 = v_1, \dots, V_d = v_d) = \prod_i \Pr(V_i = v_i \mid Parents(V_i))$$

Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(V_i = v_i \mid Parents(V_i))$$

if v_1, \dots, v_d are values consistent with the intervention, else,

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = 0$$

Bayesian network factorization:

$$Pr(v_1, \dots, v_d) = \prod_i Pr(v_i \mid Parents(v_i))$$

Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(v_1, \dots, v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(v_i \mid Parents(V_i))$$

if v_1, \dots, v_d are values consistent with the intervention, else,

$$\Pr(v_1, \cdots, v_d \mid do(s)) = 0$$

Markovian models: A model M is Markovian if the graph induced by M contains no bidirected edges (the graph is a DAG).

Semi-Markovian models: A model M is semi-Markovian if the graph induced by M contains bidirected edges (the graph is a ADMG).

The causal effect $\Pr(y \mid do(x))$ from a causal graph \mathcal{G} is identifiable if $\Pr(y \mid do(x))$ can be computed uniquely from observational data.

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Simpson paradox 1

In a study, we measure weekly exercise and cholesterol levels for various age groups.

What is the effect of exercise on cholesterol $Pr(c \mid do(e))$?

Simpson paradox 1

In a study, we measure weekly exercise and cholesterol levels for various age groups.

What is the effect of exercise on cholesterol $Pr(c \mid do(e))$?

Assaad, Devijver, Gaussier

Back-door and front-door criterions

$$Pr(a, e, c) = Pr(a) Pr(e \mid a) Pr(c \mid a, e)$$
(BN fact.)

$$\Pr(a, e, c) = \Pr(a) \Pr(e \mid a) \Pr(c \mid a, e)$$
(BN fact.)
$$\Pr(a, c \mid do(e)) = \Pr(a) \Pr(c \mid a, e)$$
(Truncated fact.)

$$Pr(a, e, c) = Pr(a) Pr(e \mid a) Pr(c \mid a, e)$$
(BN fact.)

$$Pr(a, c \mid do(e)) = Pr(a) Pr(c \mid a, e)$$
(Truncated fact.)

$$Pr(c \mid do(e)) = \sum_{a} Pr(a) Pr(c \mid a, e)$$
(marginalizing)

Theorem (identifiability in Markovian models): Given a causal graph \mathcal{G} of any Markovian model in which a subset \mathcal{V} of variables are measured, the causal effect $\Pr(y \mid do(x))$ is identifiable whenever $\{X \cup Y \cup Parents(X)\} \subseteq \mathcal{V}$, and is given by the direct causes adjustment:

$$\Pr(y \mid do(x)) = \sum_{z \in Parents(x)} \Pr(y \mid x, z) \Pr(z)$$

 $(\Pr(y \mid do(x)) = Pr(y \mid x) \text{ if Parents}(x) \text{ is empy})$

Limitations of the direct causes adjustment

In Markovian models, is it possible to find a smaller adjustment set?

What about semi-Markovian models?

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

The back-door criterion: Consider a causal graph \mathcal{G} and a causal effect $P(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the back-door criterion iff:

- no node in \mathcal{Z} is a descendant of X;
- ► *Z* blocks every path between *X* and *Y* that contains an arrow into *X*.

Theorem (back-door adjustment): If \mathcal{Z} satisfies the back-door criterion relative to (X, Y) and if Pr(x, z) > 0, then the causal effect of X on Y is identifiable and is given by

$$\Pr(y \mid do(x)) = \sum_{z} \Pr(y \mid x, z) \Pr(z).$$

Assaad, Devijver, Gaussier

Simpson paradox 2 and the back-door in action

In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.

What is the effect of the nb cups of coffee on IQ score Pr(i | do(c))?

Simpson paradox 2 and the back-door in action

In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.

What is the effect of the nb cups of coffee on IQ score Pr(i | do(c))?

Simpson paradox 2 and the back-door in action

In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.

What is the effect of the nb cups of coffee on IQ score $Pr(i \mid do(c))?$

Incompleteness of the back-door criterion

• If there exists a set that satisfies the back-door criterion for Pr(y | do(x)), then Pr(y | do(x)) is identifiable

If there is a no set satisfying the back-door criterion for Pr(y | do(x)), then Pr(y | do(x)) is not necessarily unidentifiable

Exercise 1

- Consider the following causal graph. List all *minimal* sets of variables that satisfy the back-door criterion for Pr(y | do(x))
- Repeat for Pr(y | do(x, b)).

Minimal set: any set of variables such that if you remove any of the variables from the set, it will no longer meet the criterion.

Assaad, Devijver, Gaussier

Back-door and front-door criterions

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Consider the following semi-Markovian model. Is Pr(y | do(x)) identifiable using the backdoor criterion?

Consider the following semi-Markovian model. Is Pr(y | do(x)) identifiable using the backdoor criterion?

No and it cannot be identified by any other criterion.

Consider the following semi-Markovian model. Is Pr(y | do(x)) identifiable using the backdoor criterion?

No and it cannot be identified by any other criterion.

What about the following semi-Markovian model?

Consider the following semi-Markovian model. Is Pr(y | do(x)) identifiable using the backdoor criterion?

No and it cannot be identified by any other criterion.

What about the following semi-Markovian model?

No but it can be identified by some other criterion.

 $\Pr(z \mid do(x)) = \Pr(z \mid x)$

(No back-door)

 $\Pr(z \mid do(x)) = \Pr(z \mid x)$

(No back-door)

• $\Pr(y \mid do(z)) = \sum_{x} \Pr(y \mid z, x) \Pr(x)$ (X blocks the back-door)

 $\Pr(z \mid do(x)) = \Pr(z \mid x)$

(No back-door)

- $\Pr(y \mid do(z)) = \sum_{x} \Pr(y \mid z, x) \Pr(x)$ (X blocks the back-door)
- ► $\Pr(y \mid do(x)) = \sum_{z} \Pr(y \mid do(z)) \Pr(z \mid do(x))$ (Law of total proba.)

 $\Pr(z \mid do(x)) = \Pr(z \mid x)$

(No back-door)

- $\Pr(y \mid do(z)) = \sum_{x} \Pr(y \mid z, x) \Pr(x)$ (X blocks the back-door)
- $\Pr(y \mid do(x)) = \sum_{z} \Pr(y \mid do(z)) \Pr(z \mid do(x))$ (Law of total proba.)

$$\Pr(y \mid do(x)) = \sum_{z} \Pr(z \mid x) \sum_{x'} \Pr(y \mid z, x') \Pr(x')$$

The complete derivation

After intervention: $Pr(y, z, \ell | do(x) = Pr(\ell)Pr(z|x)Pr(y|z, \ell)$ Marginalizing over *z* and ℓ yields:

$$\sum_{z} \sum_{\ell} Pr(y, z, \ell | do(x)) = Pr(y, z, \ell | do(x))$$
And: $Pr(y, z, \ell | do(x)) = \sum_{z} Pr(z|x) \underbrace{\sum_{\ell} P(y|z, \ell) P(\ell)}_{\mathcal{B}}$
Marginalizing $Pr(\ell)$ over x' : $\mathcal{B} = \sum_{\ell} Pr(y|z, \ell) \sum_{x'} Pr(\ell | x') P(x')$
Exploiting the conditional independences in the graph, one has $Pr(y|z, \ell) = Pr(y|z, x', \ell)$ and $Pr(\ell | x') = Pr(\ell | x', z)$

Thus:
$$\mathcal{B} = \sum_{x'} \sum_{\ell} \Pr(y, \ell | z, x') \Pr(x') = \sum_{x'} \Pr(y, | z, x') \Pr(x')$$

And: $Pr(y, z, \ell | do(x)) = \sum_z Pr(z|x) \sum_{x'} Pr(y, |z, x') Pr(x')$

Front-door criterion: Consider a causal graph \mathcal{G} and a causal effect $\Pr(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the front-door criterion iff:

- \mathcal{Z} intercepts all directed paths from X to Y;
- ► There is no back-door path from X to Z;
- All back-door paths from \mathcal{Z} to Y are blocked by X.

Theorem (front-door adjustment): if \mathcal{Z} satisfies the front-door criterion relative to (X, Y) and if Pr(x, z) > 0, then the causal effect of X on Y is identifiable and is given by

$$\Pr(y \mid do(X = x)) = \sum_{z} \Pr(z \mid x) \sum_{x'} \Pr(y \mid x', z) \Pr(x').$$

(proof on slide 25)

Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

What is the effect of smoking on cancer $Pr(c \mid do(s))$?

Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

What is the effect of smoking on cancer $Pr(c \mid do(s))$?

Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

What is the effect of smoking on cancer $Pr(c \mid do(s))$?

Incompleteness of the front-door criterion

If there exists a set that satisfy the front-door criterion for Pr(y | do(x)), then Pr(y | do(x)) is identifiable;

If there exists a no set that satisfy the fack-door criterion for Pr(y | do(x)), then Pr(y | do(x)) is not necessarily not identifiable.

The combination of the back-door and front door criterions are also incomplete.

Consider that in the following causal graph, only X and Y, and one additional variable can be measured. Which variable would allow the identification of Pr(y | do(x))?

Exercise 3

Is Z a good, bad or neutral control for Pr(y | do(x))?

- Z blocks a back-door path
 - \implies Z is a good control.

- Z blocks a back-door path
 - \implies Z is a good control.

- Z blocks a back-door path
 - \implies Z is a good control.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Z activates a back-door path

 \implies Z is a bad control.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Z blocks the back-door path

 \implies Z is a good control.

Is Z a good, bad or neutral control for Pr(y | do(x))?

► Z d-separates X from Y ⇒ Z is a bad control.

- Z d-separates X from Y
 - \implies Z is a bad control.

- Z does not open any backdoor paths from X to Y
 ⇒ Z is a neutral control;
- Controlling for Z can reduces the variation of Y, and helps improve the precision of the estimate in finite samples.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Z does not open any backdoor paths from X to Y
 ⇒ Z is a neutral control;

Controlling for Z can reduces the variation of X and so may hurt the precision of the estimate in finite samples.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Z does not block existing backdoor path from X to Y
 Z is a bad control;

▶ In linear models, controlling for *Z* amplify any existing bias.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Selection bias

 \implies Z is a bad control.

Is Z a good, bad or neutral control for Pr(y | do(x))?

Z does not open any backdoor paths from X to Y
 ⇒ Z is a neutral control;

Controlling for Z can reduces the variation of W, and helps improve the precision of the estimate in finite samples.

Is Z a good, bad or neutral control for Pr(y | do(x))?

► Z is a descendant of X → Z is a bad control. Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

Direct inspirations

- 1. *Causality*, J. Pearl. Cambridge University Press, 2nd edition, 2009
- Causal inference in statistics: A Primer, J. Pearl, M. Glymour, N. P. Jewell. Wiley, 2019
- 3. The book of why, J. Pearl, D. Mackenzie. Basic Books, 2018

Additional readings

- 1. *A Crash Course in Good and Bad Control*, C. Cinelli, A. Forney, J. Pearl. Sociological Methods and Research, 2022
- Simpson's paradox in psychological science: A practical guide, R. Kievit, W. Frankenhuis, L. Waldorp, D. Borsboom. Frontiers in Psychology, 2013