
Coming back to the lab

▸ The set of all paths between two nodes is implemented in
the function all_simple_paths

▸ The last question is in some sense still open:
you can do it brute force (every set of variables in the
graph).
Be careful: a set containing a set that d-separates may not
d-separates, due to colliders

Recent paper on the subject (to get efficient algorithms):
Finding Minimal d-separators in Linear Time and
Applications, Benito van der Zander, Maciej Liśkiewicz,
Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, PMLR 115:637-647, 2020
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Deterministic Structural Causal Models

A set of variables with:
▸ a causal graph,
▸ a set of equations describing how each variable depends

upon its immediate causal predecessors.

Convention: each equation has one effect variable on the left
hand side, and the cause variables on the right hand side.
Any variable that makes no difference to the value of the effect
variable is excluded from each equation.
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Example

Consider a gas grill, used to cook corn.
Set of variables:
▸ Gas connected (1 if yes, 0 if no)
▸ Gas knob (0 for off, 1 for medium, 2 for high)
▸ Gas level (0 for off, 1 for medium, 2 for high)
▸ Igniter (1 if pressed, 0 if not)
▸ Flame (0 for off, 1 for medium, 2 for high)
▸ Corn on (0 for no, 1 for yes)
▸ Corn cooked (0 for raw, 1 for medium, 2 for well done)

Set of equations:
▸ Gas level = Gas connected × Gas knob
▸ Flame = Gas level × Igniter
▸ Corn cooked = Flame × Corn on
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Deterministic Structural Causal Models

Endogenous variables: variables that are determined by other
variables in the model.
Exogenous variables: their values are determined outside of
the system.

Context: an assignment of values to the exogenous variables1.
In an acyclic SEM, a context uniquely determines the values of
all the variables in the model.
World (or causal setting): a context in an acyclic SEM

1Halpern (2016)
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Example (cont’d)

Consider a gas grill, used to cook corn.
Set of exogenous/endogenous variables:
▸ Gas connected
▸ Gas knob
▸ Gas level
▸ Igniter
▸ Flame
▸ Corn on
▸ Corn cooked

Set of equations:
▸ Gas level = Gas connected × Gas knob
▸ Flame = Gas level × Igniter
▸ Corn cooked = Flame × Corn on

Gas conn. Gas knob

Gas level Igniter

FlameCorn on

Corn cooked
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Example (cont’d)

Consider a gas grill, used to cook corn.
If we add the context
▸ Gas connected = 1
▸ Gas knob = 2
▸ Igniter = 1
▸ Corn on = 1

to our three equations,
▸ Gas level = Gas connected × Gas knob
▸ Flame = Gas level × Igniter
▸ Corn cooked = Flame × Corn on

we get Gas level = 2, Flame = 2, and Corn cooked = 2.
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Deterministic Structural Causal Models

Independent mechanism principle
The causal generative process of a system’s variables is
composed of autonomous modules that do not inform or
influence each other.

Intervention: set a value for a specified variable by a process
that overrides the usual causal structures - without interfering
with the causal processes governing the other variables.

To represent an intervention on a variable, we replace the
equation for that variable with a new equation stating the value
to which the variable is set.
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Example (cont’d)

If we intervene to set the level of flame at medium, we would
represent this by replacing the equation

Flame = Gas level × Igniter

with

Flame = 1.

One could pour kerosene into the grill and light it with a match.

New causal structure: Flame becomes an exogenous variable.
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Example (cont’d)

Graphically, we can think of the
intervention as “breaking the
arrows” pointing into Flame.

The new system of equations
can then be solved to discover
what values the other variables
would take as a result of the in-
tervention.

Gas conn. Gas knob

Gas level Igniter

FlameCorn on

Corn cooked
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Example (cont’d)

In the world described above, our intervention would produce
the following set of equations:
▸ Gas connected = 1
▸ Gas knob = 2
▸ Igniter = 1
▸ Corn on = 1
▸ Gas level = Gas connected × Gas knob
▸ Flame = Gas level × Igniter
▸ Flame = 1
▸ Corn cooked = Flame × Corn on
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Example (cont’d)

The result is a new world with a modified causal structure, with
▸ Gas level = 2,
▸ Flame = 1,
▸ Corn cooked = 1.

Since the equation connecting Flame to its causes is removed,
any changes introduced by setting Flame to 1 will only
propagate forward through the model to the descendants of
Flame.
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Actual Causation

SCM can help to determine the actual causes from the
potential causes.

If the corn is not cooked, is it because the corn has not been
put on the grill or because the flame is off?
→ we can directly check the value of the variables.

This is not possible when considering only the graph.
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Probabilistic Structural Causal Model

V = {X1,X2, . . . ,Xn} set of endogenous variables
U = {U1,U2, . . . ,Un} corresponding set of exogenous variables.

Suppose that each endogenous variable Xi is a function of its
parents in V together with Ui :

Xi = fi(PA(Xi),Ui).

Graphical representation is including only the endogenous
variables V , and we use PA(Xi) to denote the set of
endogenous parents of Xi .
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Probabilistic Structural Causal Model

Ui is sometimes called an error variable for Xi : it is responsible
for any difference between the actual value of Xi and the value
predicted on the basis of PA(Xi) alone. We may think of Ui as
encapsulating all of the causes of Xi that are not included in V .

Remark The assumption that each endogenous variable has
exactly one error variable is innocuous. If necessary, Ui can be
a vector of variables. Moreover, the error variables need not be
distinct or independent from one another.
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Example

A

B C

D

E F

G

H I

ξc

ξa

ξb

ξd

ξe ξf

ξg

ξh ξi

C ∶= fc(A,B, I, ξc)
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Example (cont’d)

A

B C
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E F

G

H I

ξc
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ξh ξi

A

G

ξc
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ξb

ξd
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M ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∶= fa(ξa)
B ∶= fb(A,H, ξb)
C ∶= fc(A,B, I, ξc)
D ∶= fd(C,F , ξd)
E ∶= fe(B,G, ξe)
F ∶= ff (C,G, ξf )
G ∶= fg(ξg)
H ∶= fh(G, ξh)
I ∶= fi(G, ξi)

A structural causal model (SCM) is a tuple that contains:
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A structural causal model (SCM) is a tuple that contains:
Causal mechanisms for generating each endogenous variable
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Probabilistic Structural Causal Model

Independent Mechanism Principle
In the probabilistic case, this means that the conditional
distribution of each variable given its causes (i.e., its
mechanism) does not inform or influence the other conditional
distributions.
▸ Independence of noises, conditional independence of

structures
▸ Independence of information contained in mechanisms
▸ Intervenability, autonomy, modularity, invariance, transfer

If the system of equations is acyclic, an assignment of values to
the exogenous variables U1,U2, . . . ,Un uniquely determines the
values of all the variables in the model. Then, if we have a
probability distribution P′ over the values of variables in U , this
will induce a unique probability distribution P on V .
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Probabilistic Structural Causal Model

Modularity assumption:
If we intervene on a subset S ⊂ V, then ∀B ∈ V, we have the
following:
▸ If B /∈ S, then Pr(B ∣ Pa(B)) does not change
▸ If B ∈ S, then Pr(B = b ∣ Pa(B)) = 1 if b if the value of B

fixed by the intervention; else, Pr(B = b ∣ Pa(B)) = 0

If b is the value of B fixed by the intervention, then we say that
the value b is consistant with the intervention.
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Example (cont’d)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∶= fa(ξa)
B ∶= fb(A,H, ξb)
C ∶= fc(A,B, I, ξc)
D ∶= fd(C,F , ξd)
E ∶= fe(B,G, ξe)
F ∶= ff (C,G, ξf )
G ∶= fg(ξg)
H ∶= fh(G, ξh)
I ∶= fi(G, ξi)

Interventional SCM

Mc ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∶= fa(ξa)
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C ∶= c
D ∶= fd(C,F , ξd)
E ∶= fe(B,G, ξe)
F ∶= ff (C,G, ξf )
G ∶= fg(ξg)
H ∶= fh(G, ξh)
I ∶= fi(G, ξi)
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Probabilistic Structural Causal Model

Violation of the modularity assumption
If the modularity assumption is not satisfied the the intervention
on S ⊂ V can change Pr(B ∣ Pa(B)) even if B /∈ S

Example

A

B C

D

Pr(C ∣ A) changes
Pr(B ∣ A) changes

In other words, without the modularity assumption, the
intervention is not necessarily local.
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Probabilistic Structural Causal Model

Reminder: bayesian network factorization

Pr(V1,⋯,Vd) =∏
i
Pr(Vi ∣ Pa(Vi))

Pr(V1 = v1,⋯,Vd = vd) =∏
i
Pr(Vi = vi ∣ Pa(Vi))

Truncated factorization
If we intervene on a subset S ⊂ V, then

Pr{S=s}(V1 = v1,⋯,Vd = vd) =∏
i/∈S

Pr(Vi ∣ Pa(Vi))

if v1,⋯,vd are values consistant with the intervention,
else,

Pr{S=s}(V1 = v1,⋯,Vd = vd) = 0
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Highlight: differences between regression and
causality

▸ Need of graph: in regression, there is no use of graph: the
output might be the cause or the effect.
easier to deal with, but less powerful

▸ The noise / the latent variables:
In regression, the noise is here to measure the distance
between the model and the data.
In causality, it encodes latent phenomena.

→ the regression is an important tool for causality (causal
inference, causal reasoning, . . . ) but causality goes beyond!
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Quantification - estimation

Once the model is set (the graph and the set of equations), we
can try to estimate the parameters from the data.

The considered graph can be considered as a variable
selection method: we know independence / conditional
independence between variables, that can reduce the set of
features.
If one would not have the graph, a multivariate regression
problem would have been considered.

If the model is assumed to be linear, we juste have to estimate
the linear coefficients.
The causes can be quantified by those linear coefficients.
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Quantification - estimation

One may want to determine if a model is valide (but very
difficult to find a suitable model among a collection)
Covariance matrix of the population, compared with
▸ Covariance matrix of exogenous variables
▸ Covariance matrix of endogenous variables
▸ Cross covariance matrix

χ2 test (among others)
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