Causal discovery: additional approaches

Charles K. Assaad, Emilie Devijver, Eric Gaussier

eric.gaussier@imag.fr

Learning models from data: a Bayesian approach Fundamental concepts Equivalence between DAGs The GES algorithm

Granger causality

Learning models from data: a Bayesian approach

Granger causality

What is our concern?

Infer a causal graph from observed data following a Bayesian approach

What is our concern?

Infer a causal graph from observed data following a Bayesian approach

Learning models from data: a Bayesian approach Fundamental concepts

Equivalence between DAGs The GES algorithm

Granger causality

Bayesian network models and DAG models

Parametrized Bayesian-network model A pair (\mathcal{G}, θ) where $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ is a DAG in which nodes correspond to variables and θ is a set of parameter values that specify all conditional probability distributions ($\theta_i \subset \theta$ subset of parameter values that define the conditional probability if X_i given its parents in \mathcal{G})

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n}) = \prod_{i=1}^{n} P(X_{i} = x_{i} | \mathbf{Pa}_{i}^{\mathcal{G}} = \mathbf{pa}_{i}^{\mathcal{G}}, \theta_{i})$$
(1)

- The structure G is a DAG model that represents the independence constraints that must hold in any distribution represented by the network
- The set of independence constraints imposed by G are represented by the Markov conditions (independence of non-descendants given parents)

Complete network

Bayesian network models and DAG models

Parametrized Bayesian-network model A pair (\mathcal{G}, θ) where $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ is a DAG in which nodes correspond to variables and θ is a set of parameter values that specify all conditional probability distributions ($\theta_i \subset \theta$ subset of parameter values that define the conditional probability if X_i given its parents in \mathcal{G})

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n}) = \prod_{i=1}^{n} P(X_{i} = x_{i} | \mathbf{Pa}_{i}^{\mathcal{G}} = \mathbf{pa}_{i}^{\mathcal{G}}, \theta_{i})$$
(1)

- The structure G is a DAG model that represents the independence constraints that must hold in any distribution represented by the network
- The set of independence constraints imposed by G are represented by the Markov conditions (independence of non-descendants given parents)

Complete network

Bayesian network models and DAG models

Parametrized Bayesian-network model A pair (\mathcal{G}, θ) where $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ is a DAG in which nodes correspond to variables and θ is a set of parameter values that specify all conditional probability distributions ($\theta_i \subset \theta$ subset of parameter values that define the conditional probability if X_i given its parents in \mathcal{G})

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n}) = \prod_{i=1}^{n} P(X_{i} = x_{i} | \mathbf{Pa}_{i}^{\mathcal{G}} = \mathbf{pa}_{i}^{\mathcal{G}}, \theta_{i})$$
(1)

- The structure G is a DAG model that represents the independence constraints that must hold in any distribution represented by the network
- The set of independence constraints imposed by G are represented by the Markov conditions (independence of non-descendants given parents)

Complete network

Remark: Markov conditions vs faithfulness

Remark: Markov conditions vs faithfulness

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G}

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G}

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G}

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G}

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G} (perfect map)

Perfect map We say that G is a *perfect map* of P if every independence constraint in P is implied by G and every independence implied by G holds in P. In this case, P is *DAG-perfect*

Assumption Each record in **D** is an iid sample from a DAG-perfect probability distribution

Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G} (perfect map)

Perfect map We say that \mathcal{G} is a *perfect map* of P if every independence constraint in P is implied by \mathcal{G} and every independence implied by \mathcal{G} holds in P. In this case, P is *DAG-perfect*

Assumption Each record in **D** is an iid sample from a DAG-perfect probability distribution Learning one or more DAG models that fit a set of observed data **D** well according to some scoring criterion $S(\mathcal{G}, \mathbf{D})$

Hypothesis \mathcal{G}^h for \mathcal{G} The observed data is a set of iid samples from a distribution that contains exactly the independence constraints implied by \mathcal{G} (perfect map)

Perfect map We say that \mathcal{G} is a *perfect map* of P if every independence constraint in P is implied by \mathcal{G} and every independence implied by \mathcal{G} holds in P. In this case, P is *DAG-perfect* Assumption Each record in **D** is an iid sample from a

DAG-perfect probability distribution

Our goal is to infer from observed data the equivalence class of the perfect map using a scoring criterion $S(\mathcal{G}, \mathbf{D})$

Our goal is to infer from observed data the equivalence class of the perfect map using a scoring criterion $S(G, \mathbf{D})$

Our goal is to infer from observed data the equivalence class of the perfect map using a scoring criterion $S(\mathcal{G}, \mathbf{D})$

Our goal is to infer from observed data the equivalence class of the perfect map using a scoring criterion $S(G, \mathbf{D})$

Bayesian scoring criterion

Bayesian scoring criterion: $S_B(\mathcal{G}, \mathbf{D}) = \log P(\mathcal{G}^h) + \log P(\mathbf{D} | \mathcal{G}^h)$

- $P(\mathcal{G}^h)$: prior probability of \mathcal{G}^h
- P(D|G^h): marginal likelihood obtained by integrating over the unknown parameters the likelihood function (Eq. 1) applied to each record in D (illustration on board)

Bayesian information criterion (BIC - Schwarz, 1978) Under some assumptions:

$$S_B(\mathcal{G}, \mathbf{D}) = \underbrace{\log P(\mathbf{D} \mid \hat{\theta}, \mathcal{G}^h) - \frac{d}{2} \log m + O(1)}_{BIC}$$

 $\hat{\theta}$: maximum-likelihood values of θ ; *d*: number of free parameters; *m*: number of records in **D**; *O*(1): constant

Bayesian scoring criterion

Bayesian scoring criterion: $S_B(\mathcal{G}, \mathbf{D}) = \log P(\mathcal{G}^h) + \log P(\mathbf{D} | \mathcal{G}^h)$

- $P(\mathcal{G}^h)$: prior probability of \mathcal{G}^h
- P(D|G^h): marginal likelihood obtained by integrating over the unknown parameters the likelihood function (Eq. 1) applied to each record in D (illustration on board)

Bayesian information criterion (BIC - Schwarz, 1978) Under some assumptions:

$$S_B(\mathcal{G}, \mathbf{D}) = \underbrace{\log P(\mathbf{D} \mid \hat{\theta}, \mathcal{G}^h) - \frac{d}{2} \log m}_{BIC} + O(1)$$

 $\hat{\theta}$: maximum-likelihood values of θ ; *d*: number of free parameters; *m*: number of records in **D**; *O*(1): constant

Decomposability A scoring $S(\mathcal{G}, \mathbf{D})$ is decomposable if $S(\mathcal{G}, \mathbf{D}) = \sum_{i=1}^{n} s(X_i, \mathbf{Pa}_i^{\mathcal{G}})$

Is the Bayesian scoring criterion decomposable?

Local consistency Let **D** be *m* iid samples from distribution *P*, *G* be any DAG and *G'* the DAG obtained from *G* by adding the edge $X_i \rightarrow X_j$. A scoring $S(G, \mathbf{D})$ is *locally consistent* if the following properties hold:

- 1. If $X_j \not\perp_P X_i | \mathbf{Pa}_j^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) > S(\mathcal{G}, \mathbf{D})$
- 2. If $X_j \perp P X_i | \mathbf{Pa}_j^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) < S(\mathcal{G}, \mathbf{D})$

Decomposability A scoring $S(\mathcal{G}, \mathbf{D})$ is decomposable if $S(\mathcal{G}, \mathbf{D}) = \sum_{i=1}^{n} s(X_i, \mathbf{Pa}_i^{\mathcal{G}})$

Is the Bayesian scoring criterion decomposable?

Local consistency Let **D** be *m* iid samples from distribution *P*, *G* be any DAG and *G'* the DAG obtained from *G* by adding the edge $X_i \rightarrow X_j$. A scoring $S(G, \mathbf{D})$ is *locally consistent* if the following properties hold:

- 1. If $X_j \not\perp_P X_i | \mathbf{Pa}_j^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) > S(\mathcal{G}, \mathbf{D})$
- 2. If $X_j \perp P X_i | \mathbf{Pa}_i^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) < S(\mathcal{G}, \mathbf{D})$

Decomposability A scoring $S(\mathcal{G}, \mathbf{D})$ is decomposable if $S(\mathcal{G}, \mathbf{D}) = \sum_{i=1}^{n} s(X_i, \mathbf{Pa}_i^{\mathcal{G}})$

Is the Bayesian scoring criterion decomposable?

Local consistency Let **D** be *m* iid samples from distribution *P*, *G* be any DAG and *G'* the DAG obtained from *G* by adding the edge $X_i \rightarrow X_j$. A scoring $S(G, \mathbf{D})$ is *locally consistent* if the following properties hold:

- 1. If $X_j \not \perp_P X_i | \mathbf{Pa}_i^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) > S(\mathcal{G}, \mathbf{D})$
- 2. If $X_j \perp_P X_i | \mathbf{Pa}_i^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) < S(\mathcal{G}, \mathbf{D})$

Decomposability A scoring $S(\mathcal{G}, \mathbf{D})$ is decomposable if $S(\mathcal{G}, \mathbf{D}) = \sum_{i=1}^{n} s(X_i, \mathbf{Pa}_i^{\mathcal{G}})$

Is the Bayesian scoring criterion decomposable?

Local consistency Let **D** be *m* iid samples from distribution *P*, *G* be any DAG and *G'* the DAG obtained from *G* by adding the edge $X_i \rightarrow X_j$. A scoring $S(G, \mathbf{D})$ is *locally consistent* if the following properties hold:

- 1. If $X_j \not \perp_P X_i | \mathbf{Pa}_i^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) > S(\mathcal{G}, \mathbf{D})$
- 2. If $X_j \perp P X_i | \mathbf{Pa}_i^{\mathcal{G}}$, then $S(\mathcal{G}', \mathbf{D}) < S(\mathcal{G}, \mathbf{D})$

During the construction of graph inferred from data:

- Bayesian scoring criterion favours addition of edges that eliminate independence constraints not contained in the generative distribution
- Bayesian scoring criterion favours deletion of any unnecessary edge

During the construction of graph inferred from data:

- Bayesian scoring criterion favours addition of edges that eliminate independence constraints not contained in the generative distribution
- Bayesian scoring criterion favours deletion of any unnecessary edge

During the construction of graph inferred from data:

- Bayesian scoring criterion favours addition of edges that eliminate independence constraints not contained in the generative distribution
- Bayesian scoring criterion favours deletion of any unnecessary edge

Learning models from data: a Bayesian approach Fundamental concepts Equivalence between DAGs The GES algorithm

Granger causality

Theorem (Markov equivalence) Two DAGs are equivalent *iff* they have the same skeleton and the same v-structures

- Markov equivalence defines an equivalence relation (reflexive, symmetric, transitive)
- Equivalence class of G: E(G)

Covered edges An $X \to Y$ is covered in \mathcal{G} if $\mathbf{Pa}(Y) = \mathbf{Pa}(X) \cup X$

Lemma (Chickering, 1995) Let \mathcal{G} be a DAG and let \mathcal{G}' the result of reversing the edge $X \to Y$ in \mathcal{G} . \mathcal{G} and \mathcal{G}' are equivalent *iff* $X \to Y$ is covered in \mathcal{G} Theorem (Markov equivalence) Two DAGs are equivalent *iff* they have the same skeleton and the same v-structures

- Markov equivalence defines an equivalence relation (reflexive, symmetric, transitive)
- Equivalence class of G: E(G)

Covered edges An $X \rightarrow Y$ is covered in \mathcal{G} if $\mathbf{Pa}(Y) = \mathbf{Pa}(X) \cup X$

Lemma (Chickering, 1995) Let \mathcal{G} be a DAG and let \mathcal{G}' the result of reversing the edge $X \to Y$ in \mathcal{G} . \mathcal{G} and \mathcal{G}' are equivalent *iff* $X \to Y$ is covered in \mathcal{G} Theorem (Markov equivalence) Two DAGs are equivalent *iff* they have the same skeleton and the same v-structures

- Markov equivalence defines an equivalence relation (reflexive, symmetric, transitive)
- Equivalence class of G: E(G)

Covered edges An $X \rightarrow Y$ is covered in \mathcal{G} if $\mathbf{Pa}(Y) = \mathbf{Pa}(X) \cup X$

Lemma (Chickering, 1995) Let \mathcal{G} be a DAG and let \mathcal{G}' the result of reversing the edge $X \to Y$ in \mathcal{G} . \mathcal{G} and \mathcal{G}' are equivalent *iff* $X \to Y$ is covered in \mathcal{G}

Markov equivalence (cont'd)

CPDAG: completed PDAG; PDAG: partially DAG

CPDAG of an equivalence class The CPDAG of an equivalence class consists of a directed edge for every *compelled* edge, and an undirected edge for every *reversible* edge (compelled: exists in all graphs of the equivalence class; reversible: not compelled)

What's the CPDAG of the equivalence class of the following DAG?

Markov equivalence (cont'd)

CPDAG: completed PDAG; PDAG: partially DAG

CPDAG of an equivalence class The CPDAG of an equivalence class consists of a directed edge for every *compelled* edge, and an undirected edge for every *reversible* edge (compelled: exists in all graphs of the equivalence class; reversible: not compelled)

What's the CPDAG of the equivalence class of the following DAG?

Learning models from data: a Bayesian approach

Fundamental concepts Equivalence between DAGs The GES algorithm

Granger causality

Remark If \mathcal{G} and \mathcal{H} are in the same equivalence class, then $\mathcal{G}^h = \mathcal{H}^h$ and $\mathcal{S}_B(\mathcal{G}, \mathbf{D}) = \mathcal{S}_B(\mathcal{H}, \mathbf{D}) \coloneqq \mathcal{S}_B(\mathcal{E}(\mathcal{G}), \mathbf{D})$

Proposition Let \mathcal{E}^* denote the equivalence class that is a perfect map of distribution *P*, and let *m* be the number of records in **D**. Then in the limit of large *m*, $S_B(\mathcal{E}^*, \mathbf{D}) > S_B(\mathcal{E}, \mathbf{D})$ for $\mathcal{E} \neq \mathcal{E}^*$

Neighbour classes $\mathcal{E}' \in \mathcal{E}^+(\mathcal{E})$ iff one can transform any DAG \mathcal{G} in \mathcal{E} to any DAG \mathcal{G}' in \mathcal{E}' through a sequence of covered edge reversals followed by a single edge addition followed by a sequence of covered edge reversals (same definition for $\mathcal{E}^-(\mathcal{E})$ with a single edge deletion)

Remark If \mathcal{G} and \mathcal{H} are in the same equivalence class, then $\mathcal{G}^h = \mathcal{H}^h$ and $\mathcal{S}_B(\mathcal{G}, \mathbf{D}) = \mathcal{S}_B(\mathcal{H}, \mathbf{D}) \coloneqq \mathcal{S}_B(\mathcal{E}(\mathcal{G}), \mathbf{D})$

Proposition Let \mathcal{E}^* denote the equivalence class that is a perfect map of distribution P, and let m be the number of records in **D**. Then in the limit of large m, $S_B(\mathcal{E}^*, \mathbf{D}) > S_B(\mathcal{E}, \mathbf{D})$ for $\mathcal{E} \neq \mathcal{E}^*$

Neighbour classes $\mathcal{E}' \in \mathcal{E}^+(\mathcal{E})$ iff one can transform any DAG \mathcal{G} in \mathcal{E} to any DAG \mathcal{G}' in \mathcal{E}' through a sequence of covered edge reversals followed by a single edge addition followed by a sequence of covered edge reversals (same definition for $\mathcal{E}^-(\mathcal{E})$ with a single edge deletion)

Remark If \mathcal{G} and \mathcal{H} are in the same equivalence class, then $\mathcal{G}^h = \mathcal{H}^h$ and $\mathcal{S}_B(\mathcal{G}, \mathbf{D}) = \mathcal{S}_B(\mathcal{H}, \mathbf{D}) \coloneqq \mathcal{S}_B(\mathcal{E}(\mathcal{G}), \mathbf{D})$

Proposition Let \mathcal{E}^* denote the equivalence class that is a perfect map of distribution P, and let m be the number of records in **D**. Then in the limit of large m, $S_B(\mathcal{E}^*, \mathbf{D}) > S_B(\mathcal{E}, \mathbf{D})$ for $\mathcal{E} \neq \mathcal{E}^*$

Neighbour classes $\mathcal{E}' \in \mathcal{E}^+(\mathcal{E})$ iff one can transform any DAG \mathcal{G} in \mathcal{E} to any DAG \mathcal{G}' in \mathcal{E}' through a sequence of covered edge reversals followed by a single edge addition followed by a sequence of covered edge reversals (same definition for $\mathcal{E}^-(\mathcal{E})$ with a single edge deletion)

Example

What are the equivalence class $\mathcal{E} = \mathcal{E}(\mathcal{G})$, $\mathcal{E}^+(\mathcal{E})$ and $\mathcal{E}^-(\mathcal{E})$ of the following graph \mathcal{G} ?

GES: greedy equivalence search

GES algorithm

- 1. Initialisation: set \mathcal{E} to the equivalence class corresponding to the DAG with no edge
- 2. Repeatedly replace \mathcal{E} with the member of $\mathcal{E}^+(\mathcal{E})$ that has the highest score, until no such replacement increases the score
- 3. Repeatedly replace \mathcal{E} with the member of $\mathcal{E}^-(\mathcal{E})$ that has the highest score, until no such replacement increases the score
- 4. Output the current class ${\cal E}$

Consistency of GES Let \mathcal{E} denote the equivalence class that results from GES, let *P* denote the DAG-perfect distribution associated with **D**, and let *m* denote the number of records in **D**. Then in the limit of large *m*, \mathcal{E} is a perfect map of *P*

GES: greedy equivalence search

GES algorithm

- 1. Initialisation: set \mathcal{E} to the equivalence class corresponding to the DAG with no edge
- 2. Repeatedly replace \mathcal{E} with the member of $\mathcal{E}^+(\mathcal{E})$ that has the highest score, until no such replacement increases the score
- Repeatedly replace *E* with the member of *E*⁻(*E*) that has the highest score, until no such replacement increases the score
- 4. Output the current class \mathcal{E}

Consistency of GES Let \mathcal{E} denote the equivalence class that results from GES, let *P* denote the DAG-perfect distribution associated with **D**, and let *m* denote the number of records in **D**. Then in the limit of large *m*, \mathcal{E} is a perfect map of *P*

- Well-founded algorithm with consistency proof first established by Meek (Meek, 1997) based on a conjecture proven by Chickering (Chickering, 2002)
- 2. Main disadvantage: computational complexity
 - Learning optimal structure with Bayesian scoring criterion is NP-hard (Chickering, 1996)
 - Fast implementations exist when the underlying graph is sparse (Chickering, 2020)
- 3. Another (faster) approach exists based on the EM (expectation-maximisation) algorithm called MS-EM for *model selection EM* described in (Friedman, 1997)
- 4. Several other extensions for different data types, *e.g.* for time series (Assaad *et al.*, 2022)

Learning models from data: a Bayesian approach

Granger causality

Causality according to Granger

Granger causality A time series X^p Granger-causes X^q if past values of X^p provide unique, statistically significant information about future values of X^q

Standard pariwise version Under the assumption of stationary linear systems, one considers the following autoregression models:

$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \xi_{t}^{q}$$
(Mres)
$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \sum_{i=1}^{\tau} a_{p,i} X_{t-i}^{p} + \xi_{t}^{q}$$
(Mfull)

 ξ^q_t are uncorrelated rand. var. with 0 mean, *a* are real coefficients, and au optimal lag

Causality according to Granger

Granger causality A time series X^p Granger-causes X^q if past values of X^p provide unique, statistically significant information about future values of X^q

Standard pariwise version Under the assumption of stationary linear systems, one considers the following autoregression models:

$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \xi_{t}^{q}$$
(Mres)
$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \sum_{i=1}^{\tau} a_{p,i} X_{t-i}^{p} + \xi_{t}^{q}$$
(Mfull)

 ξ_t^q are uncorrelated rand. var. with 0 mean, *a* are real coefficients, and τ optimal lag

Causality according to Granger (cont'd)

$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \xi_{t}^{q}$$
(Mres)
$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \sum_{i=1}^{\tau} a_{p,i} X_{t-i}^{p} + \xi_{t}^{q}$$
(Mfull)

If the full model is significantly more accurate than the restricted model, one concludes that X^p Granger-causes X^q **Remarks**

- Statistical test such as the *F*-test can be used to determine whether the full model is significantly better than the restricted one (null hypothesis: X^p does not Granger-cause X^q)
- Optimal lag τ estimated using an information criterion, as AIC (Akaike information criterion) or BIC

Causal discovery (cont'd)

Causality according to Granger (cont'd)

$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \xi_{t}^{q}$$
(Mres)
$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \sum_{i=1}^{\tau} a_{p,i} X_{t-i}^{p} + \xi_{t}^{q}$$
(Mfull)

If the full model is significantly more accurate than the restricted model, one concludes that X^p Granger-causes X^q

- Statistical test such as the *F*-test can be used to determine whether the full model is significantly better than the restricted one (null hypothesis: X^p does not Granger-cause X^q)
- Optimal lag \(\tau\) estimated using an information criterion, as AIC (Akaike information criterion) or BIC

Causality according to Granger (cont'd)

$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \xi_{t}^{q}$$
(Mres)
$$X_{t}^{q} = a_{q,0} + \sum_{i=1}^{\tau} a_{q,i} X_{t-i}^{q} + \sum_{i=1}^{\tau} a_{p,i} X_{t-i}^{p} + \xi_{t}^{q}$$
(Mfull)

If the full model is significantly more accurate than the restricted model, one concludes that X^p Granger-causes X^q

- Statistical test such as the *F*-test can be used to determine whether the full model is significantly better than the restricted one (null hypothesis: X^p does not Granger-cause X^q)
- Optimal lag \(\tau\) estimated using an information criterion, as AIC (Akaike information criterion) or BIC

input *X* a *d*-dimensional time series, $\tau_{max} \in \mathbb{N}$ optimal lag **initialisation** Form an empty graph \mathcal{G} with *d* nodes *V* Standardize data and check if it is covariance stationary for $X^q \in V$ do

Fit Mres and compute its residuals

for $X^p \in V \setminus \{X^q\}$ do

Fit Mfull and compute its residuals

Compare Mres and Mfull

if null hypothesis rejected then add $X^p \to X^q$ to \mathcal{G} return \mathcal{G}

Multivariate extension

$$\mathcal{X}_{t}^{q} = a_{q,0} + \sum_{\substack{r=1 \ r\neq p}}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{p} + \xi_{t}^{q}$$
(mvMres)
$$\mathcal{X}_{t}^{q} = a_{q,0} + \sum_{r=1}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{r} + \xi_{t}^{q}$$
(mvMfull)

If the full model is significantly more accurate than the restricted model (through a statistical test), X^p Granger-causes X^q **Remarks**

- Yields better results than previous version
- Computationally costly so that people mostly rely on pairwise version

Multivariate extension

$$\begin{aligned} \mathcal{X}_{t}^{q} &= a_{q,0} + \sum_{\substack{r=1 \ r \neq p}}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{p} + \tilde{\xi}_{t}^{q} \\ \mathcal{X}_{t}^{q} &= a_{q,0} + \sum_{r=1}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{r} + \tilde{\xi}_{t}^{q} \end{aligned} \tag{mvMres}$$

If the full model is significantly more accurate than the restricted model (through a statistical test), X^p Granger-causes X^q

- Yields better results than previous version
- Computationally costly so that people mostly rely on pairwise version

Multivariate extension

$$\begin{aligned} \mathcal{X}_{t}^{q} &= a_{q,0} + \sum_{\substack{r=1\\r\neq\rho}}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{\rho} + \tilde{\xi}_{t}^{q} \\ \mathcal{X}_{t}^{q} &= a_{q,0} + \sum_{r=1}^{d} \sum_{i=1}^{\tau} a_{r,i} \mathcal{X}_{t-i}^{r} + \tilde{\xi}_{t}^{q} \end{aligned} \tag{mvMres}$$

If the full model is significantly more accurate than the restricted model (through a statistical test), X^p Granger-causes X^q

- Yields better results than previous version
- Computationally costly so that people mostly rely on pairwise version

Several other extensions have been proposed (Assaad *et al.*, 2022), including

- Dealing with non-stationary processes (Luo *et al.*, 2015)
- Using deep learning to learn complex, non linear relations (Nauta et al., 2019)

Granger causality is not causality: no explicit way to distinguish causal relations from spurious correlations

Several other extensions have been proposed (Assaad *et al.*, 2022), including

- Dealing with non-stationary processes (Luo *et al.*, 2015)
- Using deep learning to learn complex, non linear relations (Nauta et al., 2019)

Granger causality is not causality: no explicit way to distinguish causal relations from spurious correlations

Conclusion

We have reviewed the major methods for causal discovery

- Constraint-based methods
- Noise-based methods
- Score-based methods
- Granger causality

Other methods exist but are less used: logic-based approaches, topology-based approaches (not true causality), difference-based approaches (Assaad *et al.*, 2022)

Conclusion

We have reviewed the major methods for causal discovery

- Constraint-based methods
- Noise-based methods
- Score-based methods
- Granger causality

Other methods exist but are less used: logic-based approaches, topology-based approaches (not true causality), difference-based approaches (Assaad *et al.*, 2022)

References (1)

- 1. Estimating the dimension of a model, G. E. Schwarz, 1978
- 2. A transformational characterization of Bayesian network structures, D. M. Chickering, 1995
- 3. *Learning Bayesian networks is NP-complete*, D. M. Chickering, 1996
- 4. Learning belief networks in the presence of missing values and hidden variables, N. Friedman, 1997
- 5. Optimal structure identification with greedy search, D. M. Chickering, 2002
- Discovering causal structures from time series data via enhanced Granger causality, L. Luo, W. Liu, I. Koprinska, F. Chen, 2015

- 7. Causal discovery with attention-based convolutional neural networks, M. Nauta, D. Bucur, C. Seifert, 2019
- 8. *Statistically Efficient Greedy Equivalence Search*, D. M. Chickering, 2020
- 9. Survey and evaluation of causal discovery methods for time series, K. C. Assaad, E. Devijver, E. Gausssier, 2022