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Causality

Does Obesity Shorten Life? Or is it the Soda? (Pearl, 2018)

Data Causal graph

Causal discovery

Causal reasoning

Many applications in machine learning, medecine (science in
general), root cause analysis, ...
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Causes and effects

The same causes produce the same effects ..., do they?

▸ Smoking causes lung cancer
▸ The sound of your alarm makes you wake up
▸ Cause: I flipped the light switch - Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

→ Probabilistic Causal Models
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(conditional) Independence

Conditional independence of random variables For a
distribution P, X and Y are independent conditioned on Z ,
noted X ⊥⊥P Y ∣Z , if:

P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z) (or P(X ∣Y ,Z) = P(X ∣Z) if P(Y ,Z) > 0)

Illustration

▸ Z ∼ Bi(9,0.5), X ∣Z = z ∼ N (z,1) and Y ∣Z = z ∼ N (z,1)
▸ Z ∼ Bi(3,0.5), X ∼ Exp(1) and Y ∣X = x ∼ 0.15δ0 + 0.85Pois(x)
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Probabilistic causal models (1)

A tuple M = ⟨(U ,V,F ,P(U))⟩ with
1. U is a set of unobserved background variables which can’t

be manipulated
2. V = {X1, ...,Xn} is a set of observed variables
3. F is a set of functions s.t. fi (1 ≤ i ≤ n) specifies Xi :

Xi = fi(Ei) with Ei ⊆ U ∪V
4. P(U) is a joint distribution over U
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Probabilistic causal models (2)

P(U) and F induce a joint distribution over V:

P(V) = ∑
u∈DU

P(V,u)

= ∑
u∈DU

P(V ∣u)P(u)

= ∑
u∈DU

n
∏
i=1

P(Xi ∣X1, ...,Xi−1,u)P(u)

▸ More interesting factorizations?
▸ What about P(u)?
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Probabilistic causal models (3)

Induced graph The graph G(M) induced by a probabilistic
causal model M has vertices V and an edge Xi → Xj whenever
fi depends on Xj . In addition, G contains a bidirected edge,
denoted Xi ⇠⇢ Xj , whenever fi and fj depend on a common
subset of U

Markovian causal model A causal model M is Markovian if the
graph induced by M contains no bidirected edges (causal
sufficiency)
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Probabilistic causal models (4)

P(V) does not depend on U in Markovian causal models

P(V) = ∑
u∈DU

n
∏
i=1

P(Xi ∣X1, ...,Xi−1,u)P(u)

= ∑
u∈DU

n
∏
i=1

P(xi ∣X1, ...,Xi−1,ui)P(ui)

= ∑
u∈DU

n
∏
i=1

P(Xi ,ui ∣X1, ...,Xi−1)
P(ui)

P(ui)

= ∑
u1,u2,...,un

n
∏
i=1

P(Xi ,ui ∣X1, ...,Xi−1)

=
n
∏
i=1

P(Xi ∣X1, ...,Xi−1)
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Example

X1: season (can take on 4 values)
X2: rain (binary yes/no)
X3: sprinkler (binary on/off)
X4: wet (binary yes/no)
X5: slippery (binary yes/no)

Which causal graph should we consider?

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 13



Example (cont’d)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

With no confounders:

P(V) =P(X1)P(X2 ∣X1)P(X3 ∣X1)
P(X4 ∣X2,X3)P(X5 ∣X4)
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Example (cont’d)

Conditioning vs intervention
X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 15



Example (cont’d)

Conditioning

P(X1,X2,X4,X5 ∣X3 = off) =
P(X1,X2,X4,X5,X3 = off)

∑x1
P(X1 = x1)P(X3 = off ∣X1 = x1)

=
P(X1)P(X2 ∣X1)P(X3 = off ∣X1)P(X4 ∣X2,X3 = off)P(X5 ∣X4)

∑x1
P(X1 = x1)P(X3 = off ∣X1 = x1)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5
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Example (cont’d)

Intervention

PX3=off (X1,X2,X4,X5) = P(X1)P(X2 ∣X1)P(X4 ∣X2,X3 = off )P(X5 ∣X4)

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5
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Example (cont’d)

Conditioning vs intervention

P(X1,X2,X4,X5 ∣X3 = off ) vs PX3=off (X1,X2,X4,X5)

Identification (identifiability)

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 18
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Example (cont’d)
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Interventional theory

Causation in the interventional theory

▸ A causes B if and only if there is a possible intervention on
A which changes B

▸ An intervention on A must completely disrupt the causal
relation between A and its previous causes so that the
value of A is entirely fixed by this intervention
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Causal discovery vs causal inference

Causal discovery From observational data, infer causal graph
with or without hidden confounders (hidden common causes) -
Sessions 3 and 4

Causal inference Reasoning on the causal graph through
interventions (and asking counterfactual questions) - Sessions
6 and 7

In the remainder:
▸ Focus on directed acyclic graphs
▸ Understand the relationships between graphs and

distributions
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Basic graph concepts

Let us consider the following graph G = (V,E):

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Directed path: A→ B → E → F → G (A ∼∼∼> G)

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Path (trail): D ← B → E ← C (D○∼∼∼○C)

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Parents, ancestors: Pa(E) = {B,C},

An(E) = {A,B,C,E}
An: transitive closure of the parents relation

B C

D

F

G

A

E

A

E
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Basic graph concepts (cont’d)
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B C

D

F

G

A

E

A
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Basic graph concepts (cont’d)

Children, descendants: Ch(C) = {E ,F},

De(C) = {C,E ,F ,G}
De: transitive closure of the children relation

A

B

D E

F

C

G

C

G
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Basic graph concepts (cont’d)
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A

B

D E

F

C

G

C
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Basic graph concepts (cont’d)

Upwards-closed sets: a subset of nodes S is upward-closed (or
ancestral) if ∀S ∈ S,An(S) ⊆ S

A

B C

D E

F

G
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Basic graph concepts (cont’d)

Induced subgraph G[S]: G[{B,C,D,F}]

A

B C

D E

F

G
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Bayesian networks and compatibility

A Bayesian network is a DAG (directed acyclic graph)
G = (V,E) along with a joint distribution P(V) that admits the
factorization P(V) =∏X∈V P(X ∣PaG(X))

Compatibility We say that a distribution P(V) is compatible with
(or Markov relative to) a DAG G = (V,E) if
P(V) =∏X∈V P(X ∣Pa(X)). We denote by P(V) the set of
distributions compatible with G.

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 30



Observation

Upwards-closed set If P is compatible with G and S ⊆ V is
upwards-closed, then P(S) is compatible with G[S], i.e.,
P(S) =∏S∈S P(S ∣Pa(S)) (proof on board)

A

B C

D E

F

G

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 31



Markov conditions

Ordered Markov condition P is compatible with G iff in any
topological ordering each Xi is independent of its predecessors
given its parents (proof on board)

Topological ordering: for any edge Xi → Xj , i < j

Parental Markov condition P is compatible with G iff every
variable is independent of its non-descendants given its parents
(proof on board)

X2

X3 X1

X4 X6

X5

X7

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 32



Conditioning on common ancestors

Property For disjoint X ,Y,Z ⊆ V, if An(X )∩An(Y) ⊆ Z and
An(Z) ⊆ (Z), then

P(X ,Y ∣Z) = P(X ∣Z)P(Y ∣Z) (i.e.,X ⊥⊥P Y ∣Z)

in any distribution P compatible with G
(proof on board)

Illustration

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 33



Causal Bayesian networks

Causal Markov condition Every Markovian causal model M
induces a distribution that is compatible with the induced graph
G[M]

Causal Bayesian network (Pearl 2000) Let P(V) be a
probability distribution and let Ps(V) denote the distribution
resulting from the intervention that sets a subset S of variables
to constants s. Let P∗ denote the set of all interventional
distributions Ps(V). A DAG G is said to be a causal Bayesian
network compatible with P∗ iff for every Ps(V) ∈ P∗:

(i) Ps(V) is Markov relative to G
(ii) Ps(si) = 1 or all Si ∈ S whenever si is consistent

with S = s
(ii) Ps(xi ∣Pa(Xi)) = P(xi ∣Pa(Xi)) for all Xi ∉ S

whenever Pa(Xi) is consistent with S = s

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 34



Causal Bayesian networks: example

Bayesian networks vs causal graph

Fuse

Bulb1 Bulb2

Non causal graph
Bulb1 ⊥⊥P Bulb2 ∣ Fuse

Fuse

Bulb1 Bulb2

Causal graph
Bulb1 ⊥⊥P Bulb2 ∣ Fuse

●F ∼ U{0,1}
●P(Bulb1 = 1 ∣Fuse = 1) = 1− ε1, P(Bulb1 = 0 ∣Fuse = 1) = ε1
●P(Bulb2 = 1 ∣Fuse = 1) = 1− ε2, P(Bulb2 = 0 ∣Fuse = 1) = ε2
●P(Bulb1 = 1 ∣Fuse = 0) = P(Bulb2 = 1 ∣Fuse = 0) = 0
●P(Bulb1 = 0 ∣Fuse = 0) = P(Bulb2 = 0 ∣Fuse = 0) = 1
● ε1, ε2 ∼ U[0;0.1]

Charles K. Assaad, Emilie Devijver, Eric Gaussier Introduction 35
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Forks, chains and v-structures

Z

X Y

Fork

Z

X

Y

Chain

Z

X Y

v-structure

Exploiting (in)dependencies in observational data

X ,Y ∼ U(−1,1) Z = 2XY + ξc , ξc ∼ N(0, 1
2
)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X

Y

Corr(X ;Y ) = 0.002

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X ∣ Z > 0.5

Y
∣Z

>
0.

5

Corr(X ;Y ∣ Z > 0.5) = 0.8
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Reading conditional independencies in graphs

What conditional independencies hold in a distribution P
compatible with a given graph G?

A

B C

D E

F

G

▸ A ⊥⊥P D ∣B
▸ E /⊥⊥P F ∣C
▸ B ⊥⊥P F ∣E?

By definition: Iprob(P) ∶= {(X ,Y ,Z), X ⊥⊥P Y ∣Z}
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d-Separation

Collider A collider is a directed graph isomorphic to X → Z ← Y .
We’ll refer to Z in a collider as the collider. If the two parent
vertices are not adjacent, the collider is a v-structure (also
called immorality)

Active and blocked paths A path is said to be blocked by a set
of vertices Z ∈ V if:
▸ it contains a chain A→ B → C or a fork A← B → C and

B ∈ Z, or
▸ it contains a collider A→ B ← C such that no descendant of

B is in Z

A path that is not blocked is active. A path is active if every triple
along the path is active, and blocked if a single triple is blocked
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Illustration

A

B C

D E

F

G

▸ Does {B} block D ← B → E?
▸ Does {E} block B → E → F?
▸ Does ∅ block B → E ← C?
▸ Does {E} block B → E ← C → F?
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d-Separation (cont’d)

d-separation Given disjoint sets X ,Y,Z ⊆ V, we say that X and
Y are d-separated by Z if every path between a node in X and
a node in Y is blocked by Z and we write X ⊥⊥G Y ∣Z. By
definition:

Id−sep(G) ∶= {X ⊥⊥G Y ∣Z ∶ X ,Y,Z disjoint sets}

If one of the above path is not blocked, we say that X and Y are
d-connected given Z
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Illustration

A
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D E

F

G
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▸ A ⊥⊥G F ∣C,E?
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d-Separation (cont’d)

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X ⊥⊥G Y ∣Z ⇒ X ⊥⊥P Y ∣Z in every
distribution P compatible with G

(ii) Completeness If X /⊥⊥G Y ∣Z, then there exists a
distribution P compatible with G such that
X /⊥⊥P Y ∣Z

(ii) Completeness (alternate version) If X ⊥⊥P Y ∣Z
holds in all distributions compatible with G, then
X ⊥⊥G Y ∣Z
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Markov equivalence

Theorem (Markov equivalence) Two DAGs G1 and G2 have the
same d-separations iff they have the same skeleton and the
same v-structures

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

▸ Skeleton is the undirected graph
with same adjacencies

▸ v-structure: collider X → Z ← Y s.t.
X and Y are not adjacent

▸ Flipping some edges may not
change d-separation
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Markov equivalence (partial proof)

Important lemma If Xi and Xj are not adjacent in G, then
Xi ⊥⊥G Xj ∣ (Pa(Xi),Pa(Xj) (proof on board)

Lemma (⇒) Given DAGs G1 and G2 with same vertices,
Id−sep(G1) = Id−sep(G2) implies that G1 and G2 have the same
skeleton and v-structures (proof on board)

Lemma (⇐) If G1 and G2 with same vertices have the same
skeleton and v-structures, then Id−sep(G1) = Id−sep(G2)

These lemmas prove the Markov equivalence theorem
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Completeness and soundness of d-separation

d-separation characterizes the conditional independencies of
distributions compatible with a given DAG

Theorem (probabilistic implications of d-separation)

(i) Soundness X ⊥⊥G Y ∣Z ⇒ X ⊥⊥P Y ∣Z in every
distribution P compatible with G

(ii) Completeness If X /⊥⊥G Y ∣Z, then there exists a
distribution P compatible with G such that
X /⊥⊥P Y ∣Z (proof on board)

(ii) Completeness (alternate version) If X ⊥⊥P Y ∣Z
holds in all distributions compatible with G, then
X ⊥⊥G Y ∣Z
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Implications

Theorem Given a DAG G, Id−sep(G) = ∩p∈P(G)Iprob(P)

Theorem For any DAGs G1 and G2,
Id−sep(G1) = Id−sep(G2)⇔ P(G1) = P(G2)
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Minimality and faithfulness

Causal Markov condition in practice (i.e. using observational
data) may be too loose. In particular, one wants to impose that
the graph does not contain dependencies not present in the
observational data

Minimality condition A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is
not compatible with any proper subgraph of G

May not be sufficient to rule out special cases when the
probability distribution leads to cancellation of some causal
relations (illustration on board)

Faithfulness We say that a graph G and a compatible probability
distribution P are faithful to one another if all and only the
conditional independence relations true in P are entailed by the
Markov condition applied to G
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Conclusion

Bayesian networks, causal graphical models

Data Causal graph

Causal discovery

Causal reasoning
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