Introduction to causal graphical models

Charles K. Assaad, Emilie Devijver, Eric Gaussier

eric.gaussier@imag.fr

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Preliminaries

Bayesian networks (graphs and probabilities)

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Does Obesity Shorten Life? Or is it the Soda? (Pearl, 2018)

Many applications in machine learning, medecine (science in general), root cause analysis, ...

Does Obesity Shorten Life? Or is it the Soda? (Pearl, 2018)

Many applications in machine learning, medecine (science in general), root cause analysis, ...

Does Obesity Shorten Life? Or is it the Soda? (Pearl, 2018)

Many applications in machine learning, medecine (science in general), root cause analysis, ...

Table of content

Preliminaries Causes and effects

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Causes and effects

The same causes produce the same effects ..., do they?

- Smoking causes lung cancer
- The sound of your alarm makes you wake up
- Cause: I flipped the light switch Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

Causes and effects

The same causes produce the same effects ..., do they?

Smoking causes lung cancer

- The sound of your alarm makes you wake up
- Cause: I flipped the light switch Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

Causes and effects

The same causes produce the same effects ..., do they?

- Smoking causes lung cancer
- The sound of your alarm makes you wake up
- Cause: I flipped the light switch Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

The same causes produce the same effects ..., do they?

- Smoking causes lung cancer
- The sound of your alarm makes you wake up
- Cause: I flipped the light switch Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

The same causes produce the same effects ..., do they?

- Smoking causes lung cancer
- The sound of your alarm makes you wake up
- Cause: I flipped the light switch Effect: the light came on

Probabilities are used to capture uncertainty/indeterminacy

Conditional independence of random variables For a distribution *P*, *X* and *Y* are independent conditioned on *Z*, noted $X \perp P Y \mid Z$, if:

P(X, Y|Z) = P(X|Z)P(Y|Z) (or P(X|Y,Z) = P(X|Z) if P(Y,Z) > 0)

Illustration

• $Z \sim Bi(9, 0.5), X | Z = z \sim \mathcal{N}(z, 1) \text{ and } Y | Z = z \sim \mathcal{N}(z, 1)$

• $Z \sim Bi(3, 0.5), X \sim Exp(1)$ and $Y | X = x \sim 0.15\delta_0 + 0.85Pois(x)$

Conditional independence of random variables For a distribution P, X and Y are independent conditioned on Z, noted $X \perp P Y \mid Z$, if:

P(X, Y|Z) = P(X|Z)P(Y|Z) (or P(X|Y,Z) = P(X|Z) if P(Y,Z) > 0)

Illustration

• $Z \sim Bi(9, 0.5), X | Z = z \sim \mathcal{N}(z, 1) \text{ and } Y | Z = z \sim \mathcal{N}(z, 1)$

• $Z \sim Bi(3, 0.5), X \sim Exp(1)$ and $Y | X = x \sim 0.15\delta_0 + 0.85Pois(x)$

Conditional independence of random variables For a distribution P, X and Y are independent conditioned on Z, noted $X \perp P Y \mid Z$, if:

P(X, Y|Z) = P(X|Z)P(Y|Z) (or P(X|Y,Z) = P(X|Z) if P(Y,Z) > 0)

Illustration

- $Z \sim Bi(9, 0.5), X | Z = z \sim \mathcal{N}(z, 1) \text{ and } Y | Z = z \sim \mathcal{N}(z, 1)$
- $Z \sim Bi(3, 0.5), X \sim Exp(1)$ and $Y | X = x \sim 0.15\delta_0 + 0.85Pois(x)$

Table of content

Preliminaries

Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Probabilistic causal models (1)

- 1. $\ensuremath{\mathcal{U}}$ is a set of unobserved background variables which can't be manipulated
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables
- 3. \mathcal{F} is a set of functions s.t. f_i $(1 \le i \le n)$ specifies X_i : $X_i = f_i(\mathcal{E}_i)$ with $\mathcal{E}_i \subseteq \mathcal{U} \cup \mathcal{V}$
- 4. P(U) is a joint distribution over U

- 1. $\ensuremath{\mathcal{U}}$ is a set of unobserved background variables which can't be manipulated
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables
- 3. \mathcal{F} is a set of functions s.t. f_i $(1 \le i \le n)$ specifies X_i : $X_i = f_i(\mathcal{E}_i)$ with $\mathcal{E}_i \subseteq \mathcal{U} \cup \mathcal{V}$
- 4. $P(\mathcal{U})$ is a joint distribution over \mathcal{U}

- 1. $\ensuremath{\mathcal{U}}$ is a set of unobserved background variables which can't be manipulated
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f_i(\mathcal{E}_i)$ with $\mathcal{E}_i \subseteq \mathcal{U} \cup \mathcal{V}$
- 4. P(U) is a joint distribution over U

- 1. $\ensuremath{\mathcal{U}}$ is a set of unobserved background variables which can't be manipulated
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f_i(\mathcal{E}_i)$ with $\mathcal{E}_i \subseteq \mathcal{U} \cup \mathcal{V}$
- 4. $P(\mathcal{U})$ is a joint distribution over \mathcal{U}

- 1. $\ensuremath{\mathcal{U}}$ is a set of unobserved background variables which can't be manipulated
- 2. $\mathcal{V} = \{X_1, ..., X_n\}$ is a set of observed variables
- 3. \mathcal{F} is a set of functions s.t. f_i ($1 \le i \le n$) specifies X_i : $X_i = f_i(\mathcal{E}_i)$ with $\mathcal{E}_i \subseteq \mathcal{U} \cup \mathcal{V}$
- 4. $P(\mathcal{U})$ is a joint distribution over \mathcal{U}

Probabilistic causal models (2)

 $P(\mathcal{U})$ and \mathcal{F} induce a joint distribution over \mathcal{V} :

$$P(\mathcal{V}) = \sum_{u \in D_U} P(\mathcal{V}, u)$$
$$= \sum_{u \in D_U} P(\mathcal{V} | u) P(u)$$
$$= \sum_{u \in D_U} \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1}, u) P(u)$$

- More interesting factorizations?
- ▶ What about *P*(*u*)?

Probabilistic causal models (2)

 $P(\mathcal{U})$ and \mathcal{F} induce a joint distribution over \mathcal{V} :

$$P(\mathcal{V}) = \sum_{u \in D_U} P(\mathcal{V}, u)$$

=
$$\sum_{u \in D_U} P(\mathcal{V} | u) P(u)$$

=
$$\sum_{u \in D_U} \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1}, u) P(u)$$

- More interesting factorizations?
- ▶ What about *P*(*u*)?

Probabilistic causal models (2)

 $P(\mathcal{U})$ and \mathcal{F} induce a joint distribution over \mathcal{V} :

$$P(\mathcal{V}) = \sum_{u \in D_U} P(\mathcal{V}, u)$$

=
$$\sum_{u \in D_U} P(\mathcal{V} | u) P(u)$$

=
$$\sum_{u \in D_U} \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1}, u) P(u)$$

- More interesting factorizations?
- What about P(u)?

Induced graph The graph $\mathcal{G}(M)$ induced by a probabilistic causal model M has vertices \mathcal{V} and an edge $X_i \rightarrow X_j$ whenever f_i depends on X_j . In addition, G contains a bidirected edge, denoted $X_i \leftrightarrow X_j$, whenever f_i and f_j depend on a common subset of \mathcal{U}

Markovian causal model A causal model M is Markovian if the graph induced by M contains no bidirected edges (causal sufficiency)

Induced graph The graph $\mathcal{G}(M)$ induced by a probabilistic causal model M has vertices \mathcal{V} and an edge $X_i \rightarrow X_j$ whenever f_i depends on X_j . In addition, G contains a bidirected edge, denoted $X_i \leftrightarrow X_j$, whenever f_i and f_j depend on a common subset of \mathcal{U}

Markovian causal model A causal model M is Markovian if the graph induced by M contains no bidirected edges (causal sufficiency)

Probabilistic causal models (4)

 $\textit{P}(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V}) = \sum_{u \in D_U} \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1}, u) P(u)$$

= $\sum_{u \in D_U} \prod_{i=1}^n P(x_i | X_1, ..., X_{i-1}, u_i) P(u_i)$
= $\sum_{u \in D_U} \prod_{i=1}^n \frac{P(X_i, u_i | X_1, ..., X_{i-1})}{P(u_i)} P(u_i)$
= $\sum_{u_1, u_2, ..., u_n} \prod_{i=1}^n P(X_i, u_i | X_1, ..., X_{i-1})$
= $\prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$

Probabilistic causal models (4)

 $\textit{P}(\mathcal{V})$ does not depend on \mathcal{U} in Markovian causal models

$$P(\mathcal{V}) = \sum_{u \in D_U} \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1}, u) P(u)$$

= $\sum_{u \in D_U} \prod_{i=1}^n P(x_i | X_1, ..., X_{i-1}, u_i) P(u_i)$
= $\sum_{u \in D_U} \prod_{i=1}^n \frac{P(X_i, u_i | X_1, ..., X_{i-1})}{P(u_i)} P(u_i)$
= $\sum_{u_1, u_2, ..., u_n} \prod_{i=1}^n P(X_i, u_i | X_1, ..., X_{i-1})$
= $\prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$

- X_1 : season (can take on 4 values)
- X₂: rain (binary yes/no)
- X₃: sprinkler (binary on/off)
- X₄: wet (binary yes/no)
- X₅: slippery (binary yes/no)

Which causal graph should we consider?

With no confounders:

 $P(\mathcal{V}) = P(X_1)P(X_2 | X_1)P(X_3 | X_1)$ $P(X_4 | X_2, X_3)P(X_5 | X_4)$

Introduction

Conditioning

$$P(X_1, X_2, X_4, X_5 | X_3 = off) = \frac{P(X_1, X_2, X_4, X_5, X_3 = off)}{\sum_{X_1} P(X_1 = x_1) P(X_3 = off | X_1 = x_1)}$$

=
$$\frac{P(X_1) P(X_2 | X_1) P(X_3 = off | X_1) P(X_4 | X_2, X_3 = off) P(X_5 | X_4)}{\sum_{X_1} P(X_1 = x_1) P(X_3 = off | X_1 = x_1)}$$

Intervention

 $P_{X_3 = off}(X_1, X_2, X_4, X_5) = P(X_1)P(X_2 \mid X_1)P(X_4 \mid X_2, X_3 = off)P(X_5 \mid X_4)$

Conditioning vs intervention

 $P(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $P_{X_3 = off}(X_1, X_2, X_4, X_5)$

Identification (identifiability)

Conditioning vs intervention

 $P(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $P_{X_3 = off}(X_1, X_2, X_4, X_5)$

Identification (identifiability)

Conditioning vs intervention

 $P(X_1, X_2, X_4, X_5 | X_3 = off)$ vs $P_{X_3=off}(X_1, X_2, X_4, X_5)$

Identification (identifiability)
Causation in the interventional theory

- A causes B if and only if there is a possible intervention on A which changes B
- An intervention on A must completely disrupt the causal relation between A and its previous causes so that the value of A is entirely fixed by this intervention

Causation in the interventional theory

- A causes B if and only if there is a possible intervention on A which changes B
- An intervention on A must completely disrupt the causal relation between A and its previous causes so that the value of A is entirely fixed by this intervention

Causation in the interventional theory

- A causes B if and only if there is a possible intervention on A which changes B
- An intervention on A must completely disrupt the causal relation between A and its previous causes so that the value of A is entirely fixed by this intervention

Causal discovery vs causal inference

Causal discovery From observational data, infer causal graph with or without hidden confounders (hidden common causes) - Sessions 3 and 4

Causal inference Reasoning on the causal graph through interventions (and asking counterfactual questions) - Sessions 6 and 7

In the remainder:

- Focus on directed acyclic graphs
- Understand the relationships between graphs and distributions

Causal discovery From observational data, infer causal graph with or without hidden confounders (hidden common causes) - Sessions 3 and 4

Causal inference Reasoning on the causal graph through interventions (and asking counterfactual questions) - Sessions 6 and 7

In the remainder:

- Focus on directed acyclic graphs
- Understand the relationships between graphs and distributions

Causal discovery From observational data, infer causal graph with or without hidden confounders (hidden common causes) - Sessions 3 and 4

Causal inference Reasoning on the causal graph through interventions (and asking counterfactual questions) - Sessions 6 and 7

In the remainder:

- Focus on directed acyclic graphs
- Understand the relationships between graphs and distributions

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts

Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Basic graph concepts

Let us consider the following graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

Directed path: $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ ($A \rightsquigarrow G$)

Path (trail): $D \leftarrow B \rightarrow E \leftarrow C$ ($D \circ \cdots \circ C$)

Parents, ancestors: $Pa(E) = \{B, C\},\$

Parents, ancestors: $Pa(E) = \{B, C\}$, $An(E) = \{A, B, C, E\}$ An: transitive closure of the parents relation

Children, descendants: $Ch(C) = \{E, F\},\$

Children, descendants: $Ch(C) = \{E, F\}, De(C) = \{C, E, F, G\}$ De: transitive closure of the children relation

Upwards-closed sets: a subset of nodes S is upward-closed (or ancestral) if $\forall S \in S$, $An(S) \subseteq S$

Induced subgraph $\mathcal{G}[\mathcal{S}]$: $\mathcal{G}[\{B, C, D, F\}]$

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities)

Basic graph concepts Graphs and probabilities

Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

A Bayesian network is a DAG (directed acyclic graph) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ along with a joint distribution $P(\mathcal{V})$ that admits the factorization $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa_G(X))$

Compatibility We say that a distribution $P(\mathcal{V})$ is compatible with (or Markov relative to) a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ if $P(\mathcal{V}) = \prod_{X \in \mathcal{V}} P(X | Pa(X))$. We denote by $\mathcal{P}(\mathcal{V})$ the set of distributions compatible with \mathcal{G} .

Observation

Upwards-closed set If *P* is compatible with \mathcal{G} and $\mathcal{S} \subseteq \mathcal{V}$ is upwards-closed, then $P(\mathcal{S})$ is compatible with $\mathcal{G}[\mathcal{S}]$, *i.e.*, $P(\mathcal{S}) = \prod_{\mathcal{S} \in \mathcal{S}} P(\mathcal{S} | Pa(\mathcal{S}))$ (proof on board)

Markov conditions

Ordered Markov condition P is compatible with G *iff* in any topological ordering each X_i is independent of its predecessors given its parents (proof on board)

Topological ordering: for any edge $X_i \rightarrow X_j$, i < j

Parental Markov condition P is compatible with G iff every variable is independent of its non-descendants given its parents (proof on board)

Property For disjoint $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, if $An(\mathcal{X}) \cap An(\mathcal{Y}) \subseteq \mathcal{Z}$ and $An(\mathcal{Z}) \subseteq (\mathcal{Z})$, then

 $P(\mathcal{X}, \mathcal{Y} | \mathcal{Z}) = P(\mathcal{X} | \mathcal{Z})P(\mathcal{Y} | \mathcal{Z}) \text{ (i.e., } \mathcal{X} \perp_{P} \mathcal{Y} | \mathcal{Z})$

in any distribution P compatible with G (proof on board)

Illustration

Causal Bayesian networks

Causal Markov condition Every Markovian causal model M induces a distribution that is compatible with the induced graph $\mathcal{G}[M]$

Causal Bayesian network (Pearl 2000) Let $P(\mathcal{V})$ be a probability distribution and let $P_s(\mathcal{V})$ denote the distribution resulting from the intervention that sets a subset S of variables to constants *s*. Let \mathcal{P}_* denote the set of all interventional distributions $P_s(\mathcal{V})$. A DAG \mathcal{G} is said to be a *causal Bayesian network* compatible with \mathcal{P}_* *iff* for every $P_s(\mathcal{V}) \in \mathcal{P}_*$:

- (i) $P_s(\mathcal{V})$ is Markov relative to \mathcal{G}
- (ii) $P_s(s_i) = 1$ or all $S_i \in S$ whenever s_i is consistent with S = s
- (ii) $P_s(x_i | Pa(X_i)) = P(x_i | Pa(X_i))$ for all $X_i \notin S$ whenever $Pa(X_i)$ is consistent with S = s

Causal Bayesian networks: example

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities)

Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Exploiting (in)dependencies in observational data

X, *Y* ∼ *U*(−1, 1)

Charles K. Assaad, Emilie Devij

Introduction

Exploiting (in)dependencies in observational data

 $X, Y \sim U(-1, 1)$

Charles K. Assaad, Emilie Devii

Introduction

Exploiting (in)dependencies in observational data

X, *Y* ~ U(-1, 1)

Charles K. Assaad, Emilie Devij

Exploiting (in)dependencies in observational data

X, *Y* ~ U(-1, 1)

Corr(X; Y | Z > 0.5) = 0.8

Charles K. Assaad, Emilie Devij

What conditional independencies hold in a distribution P compatible with a given graph G?

A ⊥⊥_P D | B
E ⊥⊥_P F | C
B ⊥⊥_P F | E?

What conditional independencies hold in a distribution P compatible with a given graph G?

A ⊥⊥_P D | B E ⊥⊥_P F | C B ⊥⊥_P F | E?

What conditional independencies hold in a distribution P compatible with a given graph G?

A ⊥⊥_P D | B
E ⊥⊥_P F | C
B ⊥⊥_P F | E?

What conditional independencies hold in a distribution P compatible with a given graph G?

- ► A ⊥⊥_P D | B
- ► E∦_P F|C
- $B \perp P F | E?$

What conditional independencies hold in a distribution P compatible with a given graph G?

- ► A ⊥⊥_P D | B
- ► E∦_P F|C
- $B \perp P F | E?$

d-Separation

Collider A collider is a directed graph isomorphic to $X \rightarrow Z \leftarrow Y$. We'll refer to Z in a collider as *the* collider. If the two parent vertices are not adjacent, the collider is a *v*-structure (also called *immorality*)

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider $A \rightarrow B \leftarrow C$ such that no descendant of *B* is in \mathcal{Z}

A path that is not blocked is active. A path is active if every triple along the path is active, and blocked if a single triple is blocked

d-Separation

Collider A collider is a directed graph isomorphic to $X \rightarrow Z \leftarrow Y$. We'll refer to Z in a collider as *the* collider. If the two parent vertices are not adjacent, the collider is a *v*-structure (also called *immorality*)

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is active. A path is active if every triple along the path is active, and blocked if a single triple is blocked

d-Separation

Collider A collider is a directed graph isomorphic to $X \rightarrow Z \leftarrow Y$. We'll refer to Z in a collider as *the* collider. If the two parent vertices are not adjacent, the collider is a *v*-structure (also called *immorality*)

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathbb{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z

A path that is not blocked is active. A path is active if every triple along the path is active, and blocked if a single triple is blocked

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$?
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?
- Does \emptyset block $B \rightarrow E \leftarrow C$?
- Does $\{E\}$ block $B \rightarrow E \leftarrow C \rightarrow F$?

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$?
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?
- Does \varnothing block $B \rightarrow E \leftarrow C$?
- Does $\{E\}$ block $B \rightarrow E \leftarrow C \rightarrow F$?

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$?
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?
- Does \varnothing block $B \rightarrow E \leftarrow C$?
- Does $\{E\}$ block $B \rightarrow E \leftarrow C \rightarrow F$?

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$?
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?
- Does \varnothing block $B \rightarrow E \leftarrow C$?
- Does $\{E\}$ block $B \rightarrow E \leftarrow C \rightarrow F$?

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$?
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?
- Does \varnothing block $B \rightarrow E \leftarrow C$?
- Does $\{E\}$ block $B \rightarrow E \leftarrow C \rightarrow F$?

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d*-separated by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z}$. By definition:

$$\mathcal{I}_{d-sep}(\mathcal{G}) \coloneqq \{ \mathcal{X} \coprod_{\mathcal{G}} \mathcal{Y} | \mathcal{Z} : \mathcal{X}, \mathcal{Y}, \mathcal{Z} \text{ disjoint sets} \}$$

If one of the above path is not blocked, we say that ${\cal X}$ and ${\cal Y}$ are d-connected given ${\cal Z}$

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d*-separated by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z}$. By definition:

$$\mathcal{I}_{d-sep}(\mathcal{G}) \coloneqq \{ \mathcal{X} \coprod_{G} \mathcal{Y} | \mathcal{Z} : \mathcal{X}, \mathcal{Y}, \mathcal{Z} \text{ disjoint sets} \}$$

If one of the above path is not blocked, we say that ${\cal X}$ and ${\cal Y}$ are d-connected given ${\cal Z}$

▶ B ⊥⊥_G G | F?
 ▶ A ⊥⊥_G F | C, E?
 ▶ B ⊥⊥_G E | F?

B ⊥⊥_G G | F?
 A ⊥⊥_G F | C, E?
 B ⊥⊥_G E | F?

- ► *B* ⊥⊥_{*G*} *G*|*F*?
- ► A ⊥⊥_G F | C, E?
- $\blacktriangleright B \coprod_G E | F?$

- ► *B* ⊥⊥_{*G*} *G*|*F*?
- ► A ⊥⊥_G F | C, E?
- $B \perp _G E | F?$

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness X ⊥⊥_G Y | Z ⇒ X ⊥⊥_P Y | Z in every distribution P compatible with G
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$
- (ii) Completeness (alternate version) If X ⊥⊥_P Y | Z holds in all distributions compatible with G, then X ⊥⊥_G Y | Z

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$
- (ii) Completeness (alternate version) If X ⊥⊥_P Y | Z holds in all distributions compatible with G, then X ⊥⊥_G Y | Z

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$
- (ii) Completeness (alternate version) If X ⊥_P Y | Z holds in all distributions compatible with G, then X ⊥_G Y | Z

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$
- (ii) Completeness (alternate version) If X ⊥⊥_P Y | Z holds in all distributions compatible with G, then X ⊥⊥_G Y | Z

Table of content

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Theorem (Markov equivalence) Two DAGs G_1 and G_2 have the same d-separations *iff* they have the same skeleton and the same v-structures

Theorem (Markov equivalence) Two DAGs G_1 and G_2 have the same d-separations *iff* they have the same skeleton and the same v-structures

 Skeleton is the undirected graph with same adjacencies

Theorem (Markov equivalence) Two DAGs G_1 and G_2 have the same d-separations *iff* they have the same skeleton and the same v-structures

- Skeleton is the undirected graph with same adjacencies
- v-structure: collider X → Z ← Y s.t.
 X and Y are not adjacent

Theorem (Markov equivalence) Two DAGs G_1 and G_2 have the same d-separations *iff* they have the same skeleton and the same v-structures

- Skeleton is the undirected graph with same adjacencies
- v-structure: collider $X \rightarrow Z \leftarrow Y$ s.t. X and Y are not adjacent
- Flipping some edges may not change d-separation

Important lemma If X_i and X_j are not adjacent in \mathcal{G} , then $X_i \coprod_G X_j | (Pa(X_i), Pa(X_j) \text{ (proof on board)})$

Lemma (\Rightarrow) Given DAGs \mathcal{G}_1 and \mathcal{G}_2 with same vertices, $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$ implies that \mathcal{G}_1 and \mathcal{G}_2 have the same skeleton and v-structures (proof on board)

Lemma (\Leftarrow) If \mathcal{G}_1 and \mathcal{G}_2 with same vertices have the same skeleton and v-structures, then $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$

Important lemma If X_i and X_j are not adjacent in \mathcal{G} , then $X_i \coprod_G X_j | (Pa(X_i), Pa(X_j) \text{ (proof on board)})$

Lemma (\Rightarrow) Given DAGs \mathcal{G}_1 and \mathcal{G}_2 with same vertices, $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$ implies that \mathcal{G}_1 and \mathcal{G}_2 have the same skeleton and v-structures (proof on board)

Lemma (\Leftarrow) If \mathcal{G}_1 and \mathcal{G}_2 with same vertices have the same skeleton and v-structures, then $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$

Important lemma If X_i and X_j are not adjacent in \mathcal{G} , then $X_i \perp \mathcal{G} X_j | (Pa(X_i), Pa(X_j) \text{ (proof on board)})$

Lemma (\Rightarrow) Given DAGs \mathcal{G}_1 and \mathcal{G}_2 with same vertices, $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$ implies that \mathcal{G}_1 and \mathcal{G}_2 have the same skeleton and v-structures (proof on board)

Lemma (\Leftarrow) If \mathcal{G}_1 and \mathcal{G}_2 with same vertices have the same skeleton and v-structures, then $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$

Important lemma If X_i and X_j are not adjacent in \mathcal{G} , then $X_i \perp \mathcal{G} X_j | (Pa(X_i), Pa(X_j) \text{ (proof on board)})$

Lemma (\Rightarrow) Given DAGs \mathcal{G}_1 and \mathcal{G}_2 with same vertices, $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$ implies that \mathcal{G}_1 and \mathcal{G}_2 have the same skeleton and v-structures (proof on board)

Lemma (\Leftarrow) If \mathcal{G}_1 and \mathcal{G}_2 with same vertices have the same skeleton and v-structures, then $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2)$

Table of content

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Completeness and soundness of d-separation

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness X ⊥⊥_G Y | Z ⇒ X ⊥⊥_P Y | Z in every distribution P compatible with G
- (ii) Completeness If X ↓ G 𝒴 |𝔅, then there exists a distribution P compatible with 𝔅 such that 𝑋 ↓ P 𝒴 |𝔅 (proof on board)
- (ii) Completeness (alternate version) If X ⊥⊥_P Y | Z holds in all distributions compatible with G, then X ⊥⊥_G Y | Z

Completeness and soundness of d-separation

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$ (proof on board)
- (ii) Completeness (alternate version) If X ⊥⊥_P Y | Z holds in all distributions compatible with G, then X ⊥⊥_G Y | Z

Completeness and soundness of d-separation

d-separation characterizes the conditional independencies of distributions compatible with a given DAG

- (i) Soundness $\mathcal{X} \coprod_G \mathcal{Y} | \mathcal{Z} \Rightarrow \mathcal{X} \coprod_P \mathcal{Y} | \mathcal{Z}$ in every distribution *P* compatible with \mathcal{G}
- (ii) Completeness If $\mathcal{X} \not \perp_G \mathcal{Y} | \mathcal{Z}$, then there exists a distribution *P* compatible with \mathcal{G} such that $\mathcal{X} \not \perp_P \mathcal{Y} | \mathcal{Z}$ (proof on board)
- (ii) Completeness (alternate version) If $\mathcal{X} \perp\!\!\!\perp_P \mathcal{Y} \mid \mathcal{Z}$ holds in all distributions compatible with \mathcal{G} , then $\mathcal{X} \perp\!\!\!\perp_G \mathcal{Y} \mid \mathcal{Z}$

Theorem Given a DAG \mathcal{G} , $\mathcal{I}_{d-sep}(\mathcal{G}) = \cap_{p \in \mathcal{P}(\mathcal{G})} \mathcal{I}_{prob}(\mathcal{P})$

Theorem For any DAGs \mathcal{G}_1 and \mathcal{G}_2 , $\mathcal{I}_{d-sep}(\mathcal{G}_1) = \mathcal{I}_{d-sep}(\mathcal{G}_2) \Leftrightarrow \mathcal{P}(\mathcal{G}_1) = \mathcal{P}(\mathcal{G}_2)$

Table of content

Preliminaries Causes and effects Probabilistic causal models

Bayesian networks (graphs and probabilities) Basic graph concepts Graphs and probabilities Conditional independencies in Bayesian networks

Markov equivalence of Bayesian networks

Completeness and soundness of d-separation

Markov condition in practice

Causal Markov condition in practice (*i.e.* using observational data) may be too loose. In particular, one wants to impose that the graph does not contain dependencies not present in the observational data

Minimality condition A DAG G compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of G

May not be sufficient to rule out special cases when the probability distribution leads to cancellation of some causal relations (illustration on board)

Causal Markov condition in practice (*i.e.* using observational data) may be too loose. In particular, one wants to impose that the graph does not contain dependencies not present in the observational data

Minimality condition A DAG \mathcal{G} compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of \mathcal{G}

May not be sufficient to rule out special cases when the probability distribution leads to cancellation of some causal relations (illustration on board)

Causal Markov condition in practice (*i.e.* using observational data) may be too loose. In particular, one wants to impose that the graph does not contain dependencies not present in the observational data

Minimality condition A DAG \mathcal{G} compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of \mathcal{G}

May not be sufficient to rule out special cases when the probability distribution leads to cancellation of some causal relations (illustration on board)

Causal Markov condition in practice (*i.e.* using observational data) may be too loose. In particular, one wants to impose that the graph does not contain dependencies not present in the observational data

Minimality condition A DAG \mathcal{G} compatible with a probability distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph of \mathcal{G}

May not be sufficient to rule out special cases when the probability distribution leads to cancellation of some causal relations (illustration on board)

Bayesian networks, causal graphical models

Bayesian networks, causal graphical models

References (1)

Direct inspirations

- An Introduction to Causal Graphical Models, S. Gordon (slides available at https://simons.berkeley.edu/sites/default/files/docs/18989/cau22bcspencergordon.pdf)
- 2. An Introduction to Causal Graphical Models, V. Kumar, A. Capiln, C. Park, S. Gordon, L. Schulman (handout available at https://tinyurl.com/causalitybootcamp)
- 3. *Causality*, J. Pearl. Cambridge University Press, 2nd edition, 2009

Additional readings

- 1. Equivalence and Synthesis of Causal Models, T. S. Verma, J. Pearl. Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, 1990
- 2. *Graphical aspects of causal models*, T. S. Verma. Technical report R-191, UCLA, 1993
- 3. *Probabilistic Graphical Models: Principles and Techniques*, D. Koller, N. Friedman. MIT Press, 2009
- 4. *Does Obesity Shorten Life? Or is it the Soda?*, J. Pearl. Journal of Causal Inference, 6(2), 2018