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Reminder: back-door criterion

The back-door criterion: Consider a causal graph G and a
causal effect P(y ∣do(x)). A set of variables Z satisfies the
back-door criterion iff:
▸ no node in Z is a descendant of X ;
▸ Z blocks every path between X and Y that contains an

arrow into X .
Theorem: If Z satisfies the back-door criterion relative to
(X ,Y ) and if P(x ,z) > 0, then the causal effect of X on Y is
identifiable and is given by

P(y ∣do(x)) =∑
z

P(y ∣x ,z)P(z).

The causal effect in Markovian models is always identifiable
using the back-door criterion and is given by the back-door
adjustment.
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Reminder: front-door criterion

The front-door criterion: Consider a causal graph G and a
causal effect P(y ∣do(x)). A set of variables Z satisfies the
front-door criterion iff:
▸ Z intercepts all directed paths from X to Y ;
▸ there is no back-door path from X to Z;
▸ All back-door paths from Z to Y are blocked by X .

Theorem: If Z satisfies the front-door criterion relative to (X ,Y )
and if P(x ,z) > 0, then the causal effect of X on Y is
identifiable and is given by

P(y ∣do(x)) =∑
z

P(z ∣x)∑
x ′

P(y ∣x ′,z)P(x ′).
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Reminder: back-door and front-door criterion

If there exists a set that satisfy the back-door criterion for
P(y ∣do(x)), then P(y ∣do(x)) is identifiable,

If there exists a set that satisfy the front-door criterion for
P(y ∣do(x)), then P(y ∣do(x)) is identifiable,

If there exists no set that satisfy the back-door or the front-door
criterion for P(y ∣do(x)), then P(y ∣do(x)) is not necessarily not
identifiable.

Rules of do-calculus!

Goal: identify any causal quantity that is identifiable!
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Preliminary notations

Let G = (V,E) and let X ⊆ V.

U

X ZY

We define GX to be the graph obtained by removing from G all
edges from Pa(X) to X .

U

X ZY
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Preliminary notations

Let G = (V,E) and let X ⊆ V.

U

X ZY

Analogously, we define GX to be the graph obtained by
removing from G all edge from X to Ch(X).

U

X ZY
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Preliminary notations

Let G = (V,E) and let X ⊆ V.

U

X ZY

Exercise: Draw GZ , GZ , GXZ , GXZ .
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Rule 1: Insertion / deletion of observations

Let G = (V,E) be a causal graph. Let X ,Y ,Z ,W ⊆ V be disjoint.
We have:

P(y ∣do(x),z,w) = P(y ∣do(x),w) if (X ⊥⊥ Z ∣Z ,W )GX

(proof on board)

Remark: removing do(x),we recognize the following fact:
d-separation implies conditional independence
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Rule 2: Action/observation exchange

Let G = (V,E) be a causal graph. Let X ,Y ,Z ,W ⊆ V be disjoint.
We have:

P(y ∣do(x),do(z),w) = P(y ∣do(x),z,w) if (Y ⊥⊥ Z ∣X ,W )GXZ

Remark: again, removing do(x),we recognize the following
fact: back-door criterion in term of d-separation.
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Rule 3: insertion / deletion of actions

Let Z(W ) = Z ∖AnGX (W ). Let G = (V,E) be a causal graph.
Let X ,Y ,Z ,W ⊆ V be disjoint. We have:

P(y ∣do(x),do(z),w) = P(y ∣do(x),w) if (Y ⊥⊥ Z ∣X ,W )GXZ(W)
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Rule 3: insertion / deletion of actions

Let Z(W ) = Z ∖AnGX (W ). Let G = (V,E) be a causal graph.
Let Y ,Z ,W ⊆ V be disjoint. We have:

P(y ∣do(z),w) = P(y ∣w) if (Y ⊥⊥ Z ∣X ,W )GZ(W)

Z(W)

W Y

AB

Remove potential colliders → needs to define Z(W )!
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Example: Back-door criteria

Z

YX

P(y ∣do(x)) =∑
z

P(y ∣do(x),z)P(z ∣do(x)) Marginalization over Z

P(y ∣do(x),z) = P(y ∣x ,z) by Rule 2 over GX

P(z ∣do(x)) = P(z) by Rule 3 over GX

P(y ∣do(x)) =∑
z

P(y ∣x ,z)P(z)
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Example: Front-door criteria

X ZY

P(y ∣do(x)) =∑
z

P(y ∣do(x),z)P(z ∣do(x)) Margin. over Z

P(z ∣do(x)) = P(z) by Rule 2
P(y ∣do(x),z) = P(y ∣do(x),do(z)) by Rule 2 in GXZ

P(y ∣do(x),do(z)) = P(y ∣do(x),do(z)) by Rule 3 inGZ

P(y ∣do(x)) =∑
z

P(y ∣do(z))P(z ∣x)
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Example: Front-door criteria

X ZY

P(y ∣do(x)) =∑
z

P(y ∣do(x),z)P(z ∣do(x)) Margin. over Z

P(y ∣do(x)) =∑
z

P(y ∣do(z))P(z ∣x)

P(y ∣do(x)) =∑
z

P(z ∣x)∑
x ′

P(y ∣do(z),x ′)P(x ′∣do(z))

Margin. over X
P(y ∣do(z),x ′) = P(y ∣z,x ′) by Rule 2

P(x ′∣do(z)) = P(x ′) by Rule 3
P(y ∣do(x)) =∑

z
P(z ∣x)∑

x ′
P(y ∣z,x ′)P(x ′)
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Examples

An example not satisfying back-door and front-door criteria but
being identifiable

Y

Z1 Z2X
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Completeness of do-calculus

The do-calculus is complete: if a causal estimand is identifiable,
we can identify it by a sequence of rules of do-calculus1

Nonparametric identification: do-calculus tells us if we can
identify a given causal estimand using only the causal
assumptions encoded in the causal graph.
If we introduce more assumptions about the distribution (e.g.
linearity), we can identify more causal estimands.

Proofs are constructive: there exist polynomial time algorithms
for identification.

ID algorithm!

1Shipster and Pearl, 2006, Huand and Valtorta, 2006
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Bow graph

The bow graph is not identifiable.

X Y

Proof:
▸ As there are only 2 variables, you can check what happens

with every rule: it appears that nothing is doable.
▸ We can construct two causal models with the same joint

distribution but different marginal distributions with do(x).
See Shpitser and Pearl, JMLR 2008, Thm 10

Details on board!
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Some definitions

A graph G such that each vertex has at most one child, and
only one vertex (called the root) has no children is called a tree.

A graph G such that each vertex has at most one child is called
a forest.

A path where all directed arrowheads point at observable
nodes, and never away from observable nodes is called a
confounded path.

A graph G where any pair of observable nodes is connected by
a confounded path is called a c-component (confounded
component).

A graph G which is both a C-component and a tree is called a
C-tree. We call a C-tree with a root node Y Y rooted.
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First results

Theorem Let G be a Y -rooted C-tree. Let X be any subset of
observable nodes in G which does not contain Y . Then
P(y ∣do(x)) is not identifiable.

Theorem P(y ∣do(pa(y))) is not identifiable if and only if there
exists a subgraph of G which is a Y -rooted C-tree.

Remark For X a direct cause of Y , the arrow between X and Y
is not enough, we should fix all other parents of Y .
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First problem

Downward extension lemma Assume that P(y ∣do(x)) is not
identifiable in a graph G. Consider G′ that contains all the nodes
and edges of G, and an additional node Z which is a child of all
nodes in Y . Then, P(z ∣do(x)) is not identifibale in G′.

Remark: identification of effects on a singleton is not any
simpler than the general problem of identification of effect on a
set.
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Hedge

c-forest A graph G which is both a C-component and a forest is
called a C-forest.

Hedge Let X ,Y be sets of variables in G. Let F ,F ′ be R-rooted
C-forest in G such that F ′ is a subgraph of F , X only occur in F ,
and R ∈ An(Y )GX . Then F and F ′ form a hedge for P(y ∣do(x)).

Theorem Let F ,F ′ be subgraphs of G which form a hedge for
P(y ∣do(x)). Then P(y ∣do(x)) is not identifiable.

Theorem If P(y ∣do(x)) is not identifiable, then there is a hedge
structure involved.
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ID algorithm

ID(y,x,P,G)
input: x ,y , value assignments, P a probability distribution,
G = (V,E) a causal diagram.
output: expression for P(y ∣do(x)) in terms of P or FAIL(F ,F ′)

If x = ∅ return ∑v∈V∖y P(y ,v)

If V ∖An(Y )G ≠ ∅ return ID(y ,x ∩An(Y )G ,∑V∖An(Y)G P,GAn(Y))

Let W = (V ∖X)∖An(Y )GX
. If W ≠ ∅, return ID(y ,x ∪w ,P,G)

If C(G ∖X) = {S1, . . . ,Sk} return ∑V∖(y∪x)∏i ID(si ,v ∖ si ,P,G)

If C(G ∖X) = {S}
If C(G) = {G} throw FAIL(G,G ∩S)
If S ∈ C(G) return ∑s∖y ∏ i ∣Vi ∈ SP(vi ∣v

(−i1)
π )

If ∃S′ such that S ⊂ S′ ∈ C(G) return
ID(y ,x ∩S′,∏i ∣Vi∈S′ P(ViV

(i−1)
π ∩S′,v(i−1)

π ∖S′),GS′)
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Illustration of ID algorithm

W1 X Y1

W2 Y2
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Completeness of ID algorithm

Theorem ID is complete.

Whenever the algorithm fails, it is possible to cover a hedge
from the C-components S and G considered for the subproblem
where the failure occurs.
It can be shown that this hedge implies the non-identifiability of
the original query with which the algorithm was invoked.
Then, hedges can be used to characterize all cases where
effects of the form P(y ∣do(x)) cannot be identified from the
observational distribution.

Theorem P(y ∣do(x)) is not identifiable if and only if G contains
a hedge for some P(y ′∣do(x ′)), where y ′ ⊆ y ,x ′ ⊆ x .
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Estimation

As soon as we deal with an identifiable request, we get a
formula without ’do’, so we can estimate every term using
classical statistics (conditional probabilties).

This is particularly easy when dealing with linear regression or
discrete variables.

Keep in mind that the theoretical properties of the estimators
are not classical (sum of products of estimators: the
convergence will be slower!)
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