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Introduction

Counterfactuals

| took an aspirin, and my
headache is gone: would
| have had a headache
had | not taken that as-
pirin?

Interventions

It | take an aspirin now,
will | wake up with a
headache?
P(headache|do(aspirin))

Associations

| took an aspirin after din-
ner, will | wake up with a
headache?



A first example

| took an aspirin, and my headache is gone: would | have had a
headache had | not taken that aspirin?

» T: observed treatment (aspirin)
» Y: observed outcome (headache)
» j: used in subscript to denote a specific individual (me)

v

Yi(1): potential outcome under treatment for individual i
Y;(0): potential outcome under no treatment for individual i

v

1
?

do(T =1) > Yi(1)
do(T =0) — Yi(0)

Assaad, Devijver, Gaussier Introduction



A first example

| took an aspirin, and my headache is gone: would | have had a
headache had | not taken that aspirin?

» T: observed treatment (aspirin)
» Y: observed outcome (headache)
» j: used in subscript to denote a specific individual (me)

v

Yi(1): potential outcome under treatment for individual i
Y;(0): potential outcome under no treatment for individual i

v

factual do(T=1)-Y;(1)=1
counterfactual  do(T =0) - Y;(0) =?
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Definition

Y(O) T=tY=y

where t is the hypothetical condition, and T =t', Y = y’ is the
observation.
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Definition

Y(O) T=tY=y

where t is the hypothetical condition, and T =t', Y = y’ is the
observation.

Interest in an individual level

From an experimentalist perspective, there is a profound gap
between population and individual levels of analysis: the
do(x)-operator captures the behavior of a population under
intervention, whereas Yx(u) describes the behavior of a
specific individual under such interventions.
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Fundamental law of counterfactuals

T, Y be two variables, not necessarily connected by a single
equation, described in a structural model M.

Let M; stand for the modified version of M, with the equation of
T replaced by T =t.

Formal definition of Y;(u): Y:(u) = Yu,(v)

Consistency rule: if T =t,then Y; =Y.
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Example with binary treatment

If T is binary, then the consistency rule takes the convenient
form:
Y=TYi+(1-T)Yy
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Example with binary treatment

If T is binary, then the consistency rule takes the convenient

form:
Y=TY1+(1-T)Yp

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)

» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

then Y; = U and Yo=1—U.
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Example with binary treatment

If T is binary, then the consistency rule takes the convenient

form:
Y=TY1+(1-T)Yp

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)

» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

then Y;=Uand Yy=1-U.

Observations: T=0and Y=0
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Example with binary treatment

If T is binary, then the consistency rule takes the convenient

form:
Y=TY1+(1-T)Yp

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)

» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

then Y;=Uand Yy=1-U.

Observations: T=0and Y=0
U=1
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Example with binary treatment

If T is binary, then the consistency rule takes the convenient

form:
Y=TY1+(1-T)Yp

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)

» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

then Y;=Uand Yy=1-U.

Observations: T=0and Y=0
U=1and Y,(1)=1
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General steps for computing deterministic
counterfactuals

1. Abduction: use the observations to determine the value of
)

2. Action: modify the model M by removing the structural
equations for the variables in T and replacing them with
the appropriate functions T = t, to obtain the modified
model M;

3. Prediction: use the modified model M; and the value of U
to compute the value of Y(t), the consequence of the
counterfactual
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Example with binary treatment, cont'd

What if we can’t solve for U?

1 if individual always happy

0 if individual never happy

T if individual dog-needer
1-T ifindividual dog-hater

Y:
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Example with binary treatment, cont'd

What if we can’t solve for U?

1 if individual always happy

0 if individual never happy

T if individual dog-needer
1-T ifindividual dog-hater

Y:

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)
» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)
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Example with binary treatment, cont'd

What if we can’t solve for U?

1 if individual always happy

0 if individual never happy

T if individual dog-needer
1-T ifindividual dog-hater

Y:

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)
» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

Observations: T=1and Y =0: Y,(1) =0. Whatis Y,(0)?

Assaad, Devijver, Gaussier Introduction



Example with binary treatment, cont'd

What if we can’t solve for U?

1 if individual always happy

0 if individual never happy

T if individual dog-needer
1-T ifindividual dog-hater

Y:

For example,
» Y: being happy or unhappy (1 or 0)
» T: getadogordon’t (1 or0)
» U: unobserved variable describing the individual (1 if
dog-person or 0 if anti-dog person)

Observations: T=1and Y =0: Y,(1) =0. Whatis Y,(0)?
We don’t know if the individual is never happy or a dog-hater.
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Example with binary treatment, cont'd

We add a probability distribution over U:

P(U always happy ) = 0.3
P(U never happy ) =0.2
P(U dog-needer) = 0.4
P(U dog-hater) = 0.1
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Example with binary treatment, cont'd

We add a probability distribution over U:

P(U always happy ) = 0.3

P(U never happy ) =0.2

P(U dog-needer) =0.4

P(U dog-hater) = 0.1
P(U never happy|T =1,Y =0)=0.2/(0.2+0.1) =2/3
P(U dog-hater|T=1,Y=0)=0.1/(0.2+0.1) =1/3
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Example with binary treatment, cont'd

We add a probability distribution over U:

P(U always happy ) = 0.3
P(U never happy ) =0.2
P(U dog-needer) =0.4
P(U dog-hater) = 0.1
P(U never happy|T =1,Y =0)=0.2/(0.2+0.1) =2/3
P(U dog-hater|T=1,Y=0)=0.1/(0.2+0.1) =1/3
P(Y,(0))=1/3
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General steps for computing probabilisttic
counterfactuals

1. Abduction: use the observations to update the distribution
of U

2. Action: modify the model M by removing the structural
equations for the variables in T and replacing them with
the appropriate functions T = t, to obtain the modified
model M;

3. Prediction: use the modified model M; and the updated
distribution of U to compute the value of Y (t), the
consequence of the counterfactual
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

(1)
X {(H) Y
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05, H=1,Y=15

Assaad, Devijver, Gaussier Introduction



Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s score have been had he doubled his study
time?
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s score have been had he doubled his study
time?

Ux=05,U4=0.75 Uy =0.75
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s score have been had he doubled his study
time?

Ux=05,U4=0.75 Uy =0.75

Yy-2(Ux =0.5, Uy =0.75 Uy =0.75) = 1.90
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H + Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s study time have been had he doubled his
score?
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s study time have been had he doubled his
score?

Ux =0.5Uy=0.75 Uy =0.75
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s study time have been had he doubled his
score?

Ux=05,U4=0.75 Uy =0.75

Hy_2(Ux =0.5, Uy =0.75,Uy =0.75) = 1
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Another example: fully specified linear model M

X = Uy Encouragement
H=05X+Uy Homework
Y=07X+04H+ Uy Exam score

oy =0forallije (X, H, Y}

Observation: a student named Joe, X =05 H=1,Y=15
What would Joe’s study time have been had he doubled his
score?

Ux =0.5,Uy=0.75 Uy =0.75

Hy_o(Ux =0.5,Uy =0.75, Uy =0.75) = 1

Counterfactual conditions are on the future, not on the
past!
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Another example: fully specified linear model M, contd

Again, in that case, some questions can’t be explicitly
determined.

» Suppose Joe had a scored Y = y in the exam. What is the
probability that Joe’s score would be Y = y’ had he had five
more hours of encouragement training?

» What would his expected score be in such hypothetical
world?
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Another example: fully specified linear model M, contd

Again, in that case, some questions can’t be explicitly
determined.
» Suppose Joe had a scored Y = y in the exam. What is the
probability that Joe’s score would be Y = y’ had he had five
more hours of encouragement training?

» What would his expected score be in such hypothetical
world?

We do not have information on X, H: we cannot therefore
determine uniquely the value u that pertains to Joe.
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Counterfactuals in linear models

Theorem
Let T be the slope of the total effect of X on Y,

T=E(Y|do(x+1))-E(Y|do(x))
then, for any evidence Z = e, we have

E(Yxx| Z=€) = E(Y|Z=6)+1(x-E(X|Z=¢))

Proof on board

Assaad, Devijver, Gaussier Introduction



Graphical representations of counterfactuals

w) () (w) () (@) (%)
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Backdoor criterion

Theorem If a set Z of variables satisfies the backdoor condition
relative to (X, Y), then, for all x, the counterfactual Yy is
conditionally independent of X given Z:

P(Yx|X, Z) = P(Yx|Z)
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Backdoor criterion

Theorem If a set Z of variables satisfies the backdoor condition
relative to (X, Y), then, for all x, the counterfactual Yy is
conditionally independent of X given Z:

P(Yx|X,Z) = P(Y«|Z)

It helps when estimating the probabilities of counterfactuals
from observational studies.

P(Ye=y) =Y P(Ya=yIZ = 2)P(Z - 2)
=Y P(Yx=ylZ=2X=x)P(Z=2z)

=Y P(Y=y|Z=2 X=x)P(Z = 2z).

Assaad, Devijver, Gaussier Introduction



Difference between post intervention and pre
intervention

Example with college, skill and salary
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