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Counterfactuals
I took an aspirin, and my
headache is gone: would
I have had a headache
had I not taken that as-
pirin?

Interventions
It I take an aspirin now,
will I wake up with a
headache?
P(headache|do(aspirin))

Associations
I took an aspirin after din-
ner, will I wake up with a
headache?

Assaad, Devijver, Gaussier Introduction 3



A first example

I took an aspirin, and my headache is gone: would I have had a
headache had I not taken that aspirin?

▸ T : observed treatment (aspirin)
▸ Y : observed outcome (headache)
▸ i : used in subscript to denote a specific individual (me)
▸ Yi(1): potential outcome under treatment for individual i
▸ Yi(0): potential outcome under no treatment for individual i

do(T = 1) → Yi(1) = 1
do(T = 0) → Yi(0) =?
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Definition

Y (t)∣ T = t ′,Y = y ′

where t is the hypothetical condition, and T = t ′,Y = y ′ is the
observation.

Interest in an individual level
From an experimentalist perspective, there is a profound gap
between population and individual levels of analysis: the
do(x)-operator captures the behavior of a population under
intervention, whereas Yx(u) describes the behavior of a
specific individual under such interventions.
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Fundamental law of counterfactuals

T ,Y be two variables, not necessarily connected by a single
equation, described in a structural model M.
Let Mt stand for the modified version of M, with the equation of
T replaced by T = t .
Formal definition of Yt(u): Yt(u) = YMt (u)

Consistency rule: if T = t , then Yt = Y .

Assaad, Devijver, Gaussier Introduction 6



Example with binary treatment

If T is binary, then the consistency rule takes the convenient
form:

Y = TY1 + (1−T )Y0

For example,
▸ Y : being happy or unhappy (1 or 0)
▸ T : get a dog or don’t (1 or 0)
▸ U: unobserved variable describing the individual (1 if

dog-person or 0 if anti-dog person)
then Y1 = U and Y0 = 1−U.

Observations: T = 0 and Y = 0
U = 1 and Yu(1) = 1
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General steps for computing deterministic
counterfactuals

1. Abduction: use the observations to determine the value of
U

2. Action: modify the model M by removing the structural
equations for the variables in T and replacing them with
the appropriate functions T = t , to obtain the modified
model Mt

3. Prediction: use the modified model Mt and the value of U
to compute the value of Y (t), the consequence of the
counterfactual
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Example with binary treatment, cont’d

What if we can’t solve for U?

Y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if individual always happy
0 if individual never happy
T if individual dog-needer

1−T if individual dog-hater

For example,
▸ Y : being happy or unhappy (1 or 0)
▸ T : get a dog or don’t (1 or 0)
▸ U: unobserved variable describing the individual (1 if

dog-person or 0 if anti-dog person)

Observations: T = 1 and Y = 0: Yu(1) = 0. What is Yu(0)?
We don’t know if the individual is never happy or a dog-hater.
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Example with binary treatment, cont’d

We add a probability distribution over U:

P(U always happy ) = 0.3
P(U never happy ) = 0.2

P(U dog-needer) = 0.4
P(U dog-hater) = 0.1

P(U never happy∣T = 1,Y = 0) = 0.2/(0.2+ 0.1) = 2/3
P(U dog-hater∣T = 1,Y = 0) = 0.1/(0.2+ 0.1) = 1/3

P(Yu(0)) = 1/3

Assaad, Devijver, Gaussier Introduction 10



Example with binary treatment, cont’d

We add a probability distribution over U:

P(U always happy ) = 0.3
P(U never happy ) = 0.2

P(U dog-needer) = 0.4
P(U dog-hater) = 0.1

P(U never happy∣T = 1,Y = 0) = 0.2/(0.2+ 0.1) = 2/3
P(U dog-hater∣T = 1,Y = 0) = 0.1/(0.2+ 0.1) = 1/3

P(Yu(0)) = 1/3

Assaad, Devijver, Gaussier Introduction 10



Example with binary treatment, cont’d

We add a probability distribution over U:

P(U always happy ) = 0.3
P(U never happy ) = 0.2

P(U dog-needer) = 0.4
P(U dog-hater) = 0.1

P(U never happy∣T = 1,Y = 0) = 0.2/(0.2+ 0.1) = 2/3
P(U dog-hater∣T = 1,Y = 0) = 0.1/(0.2+ 0.1) = 1/3

P(Yu(0)) = 1/3

Assaad, Devijver, Gaussier Introduction 10



General steps for computing probabilisttic
counterfactuals

1. Abduction: use the observations to update the distribution
of U

2. Action: modify the model M by removing the structural
equations for the variables in T and replacing them with
the appropriate functions T = t , to obtain the modified
model Mt

3. Prediction: use the modified model Mt and the updated
distribution of U to compute the value of Y (t), the
consequence of the counterfactual
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Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

H YX

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s score have been had he doubled his study
time?
UX = 0.5,UH = 0.75,UY = 0.75
YH=2(UX = 0.5,UH = 0.75,UY = 0.75) = 1.90

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s score have been had he doubled his study
time?
UX = 0.5,UH = 0.75,UY = 0.75
YH=2(UX = 0.5,UH = 0.75,UY = 0.75) = 1.90

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s score have been had he doubled his study
time?
UX = 0.5,UH = 0.75,UY = 0.75
YH=2(UX = 0.5,UH = 0.75,UY = 0.75) = 1.90

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s study time have been had he doubled his
score?

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s study time have been had he doubled his
score?
UX = 0.5,UH = 0.75,UY = 0.75

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s study time have been had he doubled his
score?
UX = 0.5,UH = 0.75,UY = 0.75
HY=2(UX = 0.5,UH = 0.75,UY = 0.75) = 1

Assaad, Devijver, Gaussier Introduction 12



Another example: fully specified linear model M

X = UX Encouragement
H = 0.5X +UH Homework
Y = 0.7X + 0.4H +UY Exam score

σUi Uj = 0 for all i , j ∈ {X ,H,Y}

Observation: a student named Joe, X = 0.5,H = 1,Y = 1.5
What would Joe’s study time have been had he doubled his
score?
UX = 0.5,UH = 0.75,UY = 0.75
HY=2(UX = 0.5,UH = 0.75,UY = 0.75) = 1

Counterfactual conditions are on the future, not on the
past!
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Another example: fully specified linear model M, cont’d

Again, in that case, some questions can’t be explicitly
determined.
▸ Suppose Joe had a scored Y = y in the exam. What is the

probability that Joe’s score would be Y = y ′ had he had five
more hours of encouragement training?

▸ What would his expected score be in such hypothetical
world?

We do not have information on X ,H: we cannot therefore
determine uniquely the value u that pertains to Joe.
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Counterfactuals in linear models

Theorem
Let τ be the slope of the total effect of X on Y ,

τ = E(Y ∣do(x + 1)) −E(Y ∣do(x))

then, for any evidence Z = e, we have

E(YX=x ∣ Z = e) = E(Y ∣Z = e) + τ(x −E(X ∣Z = e))

Proof on board
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Graphical representations of counterfactuals

Z1 Z2

Z3 W2W1

W3 YX

Z1 Z2

Z3 W2W1

(W3)x YxX = x

Assaad, Devijver, Gaussier Introduction 15



Backdoor criterion

Theorem If a set Z of variables satisfies the backdoor condition
relative to (X ,Y ), then, for all x , the counterfactual Yx is
conditionally independent of X given Z :

P(Yx ∣X ,Z) = P(Yx ∣Z)

It helps when estimating the probabilities of counterfactuals
from observational studies.

P(Yx = y) = ∑
z

P(Yx = y ∣Z = z)P(Z = z)

= ∑
z

P(Yx = y ∣Z = z,X = x)P(Z = z)

= ∑
z

P(Y = y ∣Z = z,X = x)P(Z = z).
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Difference between post intervention and pre
intervention

Example with college, skill and salary
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