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Recap about causal graphical models

Causal sufficiency

∀X ← Z → Y , if X ,Y ∈ V then Z ∈ V.

Topological ordering: Consider a causal DAG G = (V,E) and a
topological ordering T = {X1,⋯,Xp}. If Xi → Xj in G then i < j .
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Recap about structural causal models (1/2)

V = {X1,X2, . . . ,Xn} set of endogenous variables
U = {ξ1, ξ2, . . . , ξn} corresponding set of exogenous variables.

Suppose that each endogenous variable Xi is a function of its
parents in V together with ξi :

Xi = fi(Parents(Xi), ξi).

Graphical representation is including only the endogenous
variables V , and we use Parents(Xi) to denote the set of
endogenous parents of Xi .
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Recap about structural causal models (2/2)

Independent Mechanism Principle
In the probabilistic case, this means that the conditional
distribution of each variable given its causes (i.e., its
mechanism) does not inform or influence the other conditional
distributions.
▸ Independence of noises, conditional independence of

structures
▸ Independence of information contained in mechanisms
▸ Intervenability, autonomy, modularity, invariance, transfer

If the system of equations is acyclic, an assignment of values to
the exogenous variables ξ1, ξ2, . . . , ξn uniquely determines the
values of all the variables in the model. Then, if we have a
probability distribution P′ over the values of variables in ξ , this
will induce a unique probability distribution P on V .
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The intuition behind the noise (1/2)

Suppose
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= 2X + ξy

Given P(X ,Y ), one can detect X −Y but what about
orientation?

Y ∶= 2X + ξy ?
or

Wihout further assumption we cannot know.

X ∶= Y
2 + ξx?

Assume that the noise follow a uniform distribution on {−1,0,1}

X Y ξy = Y − 2X ξx = X −Y /2
1 2 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
3 6 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
4 9 1 ∈ {−1,0,1} −0.5 /∈ {−1,0,1}
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The intuition behind the noise (2/2)

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= fx(ξx)
Y ∶= fy(X , ξy)

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

Backwards model:

X Y

ξx ξy

M2 ∶
⎧⎪⎪⎨⎪⎪⎩

Y ∶= gy(ξy)
X ∶= gx(Y , ξx)

▸ X /⊥⊥G ξy

▸ Y ⊥⊥G ξx
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Noise based question

Main question: Given P(V) a compatible probability distribution
of G, can we discover G?

No!
It is possible that Y ⊥⊥P ξx .
Example:

X ∼ N(0,1)
ξy ∼ N(0,1)
Y ∶= 2X + ξy

Ô⇒ The Markov equivalence class is the best we can do!
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The linear case (1/2)

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= aX + ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξx ?

Backwards model:

X Y

ξx ξy

M2 ∶
⎧⎪⎪⎨⎪⎪⎩

Y ∶= ξy

X ∶= bY + ξx

ξx = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy
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The linear case (2/2)

Y = aX + ξy

ξx = (1− ba)X − bξy

When Y ⊥⊥P ξx ?

Theorem (Darmois-Skitovich): Let X1,⋯,Xn be independent,
non degenerate random variables. If for two linear
combinations:

l1 = a1X1 +⋯+ anXn

l2 = b1X1 +⋯+ bnXn

are independent, then each Xi is normally distributed.
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The linear non gaussian case (1/2)

Theorem (identiability of linear non-Gaussian models): Assume
that P(X ,Y ) admits the linear model

Y ∶= aX + ξy , X ⊥⊥P ξy ,

with continuous random variables X , ξy , and Y . Then there
exists b ∈ R and a random variable ξx such that

X ∶= bY + ξx , Y ⊥⊥P ξx ,

if and only if ξy and X are Gaussian.
(proof on board)
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The linear non gaussian case (2/2)

Example:

X ∼ U(0,1)
ξy ∼ U(0,1)
Y ∶= 2X + ξy
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The non linear case (1/3)

Continuous additive noise models

X Y

ξx ξy

M1 ∶
⎧⎪⎪⎨⎪⎪⎩

X ∶= ξx

Y ∶= fy(X)+ ξy

▸ X ⊥⊥G ξy

▸ Y /⊥⊥G ξx

When Y ⊥⊥P ξx ?
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The non linear case (2/3)

Theorem (identiability of additive noise models): Assume that
P(X ,Y ) admits the non-linear additive noise model

Y ∶= fy(X)+ ξy , X ⊥⊥P ξy ,

with continuous random variables X , ξy , and Y . Then there
exists g() and random variable ξx such that

X ∶= fx(Y )+ ξx , Y ⊥⊥P ξx ,

if and only if Complicated Condition is satisfied.
(Hoyer et al, 2008)

Complicated Condition: The triple (fy ,P(X),P(ξy)) solves the
following differential equation for all x ,y with
(logP(ξy))′′(y − fy(x))f ′(x) ≠ 0.
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The non linear case (3/3)

▸ The space that satisfy the condition is a 3-dimentional
space;
The space of continuous distributions is infinite
dimensional;
Ô⇒ we have identifiability for most distributions.

▸ If the noise is Gaussian, then the only functional form that
satisfies Complicated Condition is linearity.

▸ If the function is linear and the noise is non-Gaussian, then
one can’t fit a linear backwards model but one can fit a
non-linear backwards models.
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Causal order discovery procedure in the bivariate case

Given P(X ,Y ) and a dependence estimator Î
Procedure:

1. Fit f̂Y and f̂X :

X Y Y Xf̂Y f̂X

2. Compute residuals ξ̂Y and ξ̂X :

X Y Y Xf̂Y f̂X

ξ̂Y ξ̂X

3. Order:
▸ T = [X ,Y ] if Î(x , ξ̂Y ) < Î(y , ξ̂X )
▸ T = [Y ,X ] if Î(y , ξ̂X ) < Î(x , ξ̂Y )

4. Output (suppose T = [X ,Y ]):
▸ X → Y if X ⊥⊥P ξ̂Y and Y /⊥⊥P ξ̂X
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Minimality

Minimality condition A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is
not compatible with any proper subgraph of G.

Remark: faithfulness Ô⇒ minimality.
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Minimality and d-sep

Theorem (implication of minimality on d-sep): Consider the
random vector V and assume that the joint distribution has a
density with respect to a product measure. Suppose that P(V)
is Markov with respect to G. Then P(V) satisfies the minimality
condition iff ∀X ∈ V and ∀Y ∈ Parents(X ,G),
X /⊥⊥P Y ∣ Parents(X ,G)/{Y}.
(proof on board)

Assaad, Devijver, Gaussier Causal discovery: noise-based methods 22 / 39



Violation of minimality

Example 1: canceling out

Z

X Y

2−+

+

Example 2: constant functions
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Linear non gaussian

Theorem (LiNGAM) Assume a linear SCM with graph G = (V,E)
and a compatible distribution P(V) such that ∀Y ∈ V

Y ∶= ∑
X∈Parents(Y ,G)

axyX + ξy

where all ξy are jointly independent and non-Gaussian
distributed. Additionally, we require that
∀Y ∈ V,X ∈ Parents(Y ,G),axy ≠ 0. Then, the graph G is
identifiable from P(V).
(proof in (Shimizu et al, 2011))
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The LiNGAM algorithm

Algorithm 1 LiNGAM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V = {X1,⋯,Xp}
2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for i ∈ S do
6: for j ∈ S/{i} do
7: ξ̂ij = Xj −

cov(Xi ,Xj)
var(Xi)

Xi

8: end for
9: h = ∑j∈S/{i} Î(Xi , ξ̂ij)

10: H = [H,h]
11: end for
12: i∗ = arg mini∈S H
13: S = S/{i∗}
14: T = [T , i∗]
15: ∀j ∈ S,Xj = ξ̂i∗j
16: until ∣S∣ = 0
17: Append(T , S0)
18: Construct a strictly lower triangular matrix by following the order in T , and estimate the connec-

tion strengths ai,j by using some conventional covariance-based regression.
19: if ai,j > 0 then
20: Add Xi → Xj to G
21: end if
22: Return G
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Additive noise models

Theorem (ANM) Assume a non-linear SCM with graph
G = (V,E) and a compatible distribution P(V) that satisfy the
minimality condition with respect to G. ∀Y ∈ V

Y ∶= f (Parents(Y ,G))+ ξy

where all ξy are jointly independent. Then, the graph G is
identifiable from P(V).
(proof in (Peters et al, 2014))
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The ANM algorithm

Algorithm 2 ANM
Input: P(V)
Output: G

1: Form an empty graph G on vertex set V = {X1,⋯,Xp}
2: Let S = {1,⋯,p} and T = []
3: repeat
4: H = []
5: for j ∈ S do
6: f̂.j : Regress X j on {Xi}i∈S/{j}
7: ξ̂.j = Xj − f̂.j(Xi)
8: h = Î({Xi}i∈S/{j}, ξ.j)
9: H = [H,h]

10: end for
11: i∗ = arg mini∈S H
12: S = S/{i∗}
13: T = [i∗,T ]
14: until ∣S∣ = 0
15: for j ∈ {2,⋯,p} do
16: for i ∈ {T1,⋯,Tj−1} do
17: f̂.j : Regress X j on {Xk}k∈{T1,⋯,Tj−1}/{i}

18: ξ̂.j = Xj − f̂.j(Xi)
19: if {Xk}k∈{T1,⋯,Tj−1}/{i} /⊥⊥P ξ.j then
20: Add Xi → Xj to G
21: end if
22: end for
23: end for
24: Return G
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ANM in action (1/4)

▸ Suppose the true graph on right;
▸ Assumptions: CMC, minimality, causal

sufficiency.

A

B

D E
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ANM in action (2/4)

▸ Estimate A,B,D ↦ E and
ξ̂e
▸ H1 = Î({A,B,D}, ξ̂e)

▸ Estimate A,D,E ↦ B and
ξ̂b
▸ H3 = Î({A,D,E}, ξ̂b)

▸ Estimate A,B,E ↦ D and
ξ̂d
▸ H2 = Î({A,B,E}, ξ̂d)

▸ Estimate B,D,E ↦ A and
ξ̂a
▸ H4 = Î({B,D,E}, ξ̂a)

4 = Argmin(H)
T = [A]
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ANM in action (3/4)

▸ Estimate B,D ↦ E and ξ̂e

▸ H1 = Î({B,D}, ξ̂e)
▸ Estimate D,E ↦ B and ξ̂b

▸ H3 = Î({D,E}, ξ̂b)

▸ Estimate B,E ↦ D and ξ̂d

▸ H2 = Î({B,E}, ξ̂d)

1 = Argmin(H)
T = [E ,A]

▸ Estimate D ↦ B and ξ̂b
▸ H1 = Î(D, ξ̂b)

▸ Estimate B ↦ D and ξ̂d
▸ H2 = Î(B, ξ̂d)

2 = Argmin(H)
T = [D,E ,A]

T = [B,D,E ,A]
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▸ H3 = Î({D,E}, ξ̂b)

▸ Estimate B,E ↦ D and ξ̂d
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▸ H1 = Î(D, ξ̂b)

▸ Estimate B ↦ D and ξ̂d
▸ H2 = Î(B, ξ̂d)

2 = Argmin(H)
T = [D,E ,A]

T = [B,D,E ,A]

Assaad, Devijver, Gaussier Causal discovery: noise-based methods 30 / 39



ANM in action (3/4)

▸ Estimate B,D ↦ E and ξ̂e
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ANM in action (4/4)

T = [B,D,E ,A]

A

B

D E

A

B

D E

A

B

D E
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ANM in action (4/4)
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Exercise 1

After applying LiNGAM, how can you know if causal sufficiency
is not respected?
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Exercise 2

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = a ∗Z + ξx ξx ∼ U(0,1);
Y = b ∗Z + ξy ξy ∼ U(0,1);
W = c ∗X − d ∗Y + ξw ξw ∼ N(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm? And
what about the ANM algorithm?

Z

X Y

W
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Exercise 3

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

minimality;
▸ Generative process:

Z = ξz ξz ∼ U(0,1);
X = Z 2 + ξx ξx ∼ U(0,1);
Y = Z 3 + ξy ξy ∼ U(0,1);
W = XY + ξw ξw ∼ U(0,1).

▸ Given a compatible distribution what would
be the output of the LiNGAM algorithm? And
what about the ANM algorithm?

Z

X Y

W
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Conclusion

▸ Under linear non gaussian models noise-based methods
can discover the causal graph.

▸ Under non-linear additive noise models noise-based
methods can discover the causal graph.

▸ Advantages:
▸ Can discovery the true graph;
▸ Faithfulness is not needed.

▸ Drawbacks:
▸ Semi parametric assumptions;
▸ Need large sample size.
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Some extensions

▸ Without causal sufficiency if linear relations;
▸ Extension to discrete additive noise models;
▸ Post non linear relations;
▸ Time series.
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