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Where does a causal graph come from?

▸ Theory
▸ Sometimes infeasible

▸ Experts
▸ Sometimes infeasible

▸ Experimentations
▸ Sometimes infeasible
▸ Sometimes unethical
▸ Costly

▸ Observations
▸ Correlation does not

imply causation!
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Causal discovery

Data Causal graph

Causal reasoning

Causal discovery

In general, causal discovery from observational data is not
possible.

But it is possible under additional assumptions.
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Recap about causal graphical models (1/2)

Causal discovery

Constraint-based Noise-based Score-based Other

Constraint-based: run local tests of independence to create
constraints on space of possible graphs.
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Recap about causal graphical models (1/2)

Parental Markov Condition Given G = (V,E),

∀X ∈ V,X ⊥⊥P V/{Parents(X),Descendants(X)} ∣ Parents(X).

Causal sufficiency

∀X ← Z → Y , if X ,Y ∈ V then Z ∈ V.

Skeleton the skeleton of a DAG G is an undirected graph with
same adjacencies as G.

Collider X → Z ← Y .

V-structure (or unsheilded colliders, or immorality) If the two
parent vertices are not adjacent, the collider is a v-structure.
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Recap about causal graphical models (2/2)

Theorem (probabilistic implications of d-separation) Given a
DAG G = (V,E), a distribution P(V) compatible with G and
disjoint sets X ,Y,Z ⊂ V:

(i) X ⊥⊥G Y ∣Z ⇒ X ⊥⊥P Y ∣Z in every distribution P
compatible with G (Also known as the global
Markov property);

(ii) If X /⊥⊥G Y ∣Z, then there exists a distribution P
compatible with G such that X /⊥⊥P Y ∣Z ;

(ii) If X ⊥⊥P Y ∣Z holds in all distributions compatible
with G, then X ⊥⊥G Y ∣Z.

Theorem (Markov equivalence for DAGs) Two DAGs G1 and G2
are Markov equivalent (have the same d-separations) iff they
have the same skeleton and the same v-structures.
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A characterization of Markov equivalence classes for
DAGs (1/2)

Completed partially directed acyclic graph (CPDAG) Let [G] be
the Markov equivalence class of a DAG G. The CPDAG G∗ of G
is the graph:
▸ With the same skeleton as G;
▸ Where an edge is directed in G∗ iff it occurs as a directed

edge with the same orientation in every graph in [G];
▸ All other edges are undirected.

Proposition Let G be a DAG and G∗ its CPDAG. Then G and G∗

are Markov equivalent.
Proof: Follows immediately by Theorem (Markov equivalence
for DAGs) and by Definition of CPDAG.
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A characterization of Markov equivalence classes for
DAGs (2/2)

Lemma Let G∗1 and G∗2 denote two CPDAGs then G∗1 = G
∗
2 iff G∗1

and G∗2 belong to the same Markov equivalent class.

Proof: Follows immediately by Theorem (Markov equivalence
for DAGs) and by Definition of CPDAG.
Ô⇒ All graphs in the same Markov equivalent class have the
same CPDAG.
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Constraint based question

Main question: Given P(V) a compatible probability distribution
of G, can we discover G∗ the CPDAG of G?

No!

Because X ⊥⊥P Y ∣ Z /Ô⇒ X ⊥⊥G Y ∣ Z .
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Faithfulness

Faithfulness We say that a graph G and a compatible probability
distribution P are faithful to one another if all and only the
conditional independence relations true in P are entailed by the
Markov condition applied to G.
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faithfulness and d-sep

Theorem (implication of faithfulness on d-sep) P(V) is faithful to
directed acyclic graph G with vertex set V iff for all disjoint sets
of vertices X ,Y,Z ⊂ V, X ⊥⊥P Y ∣ Z iff X ⊥⊥G Y ∣ Z.

Proof: Follows immediately by Theorem (probabilistic
implication on d-separation) and by Definition of faithfulness.
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Violation of faithfulness (1/2)

Example 1: Canceling out
Consider

Z

X Y

W

−+

−+

where
▸ Z = ϵz

▸ X = azx ×Z + ϵx

▸ Y = azy ×Z + ϵy

▸ W = axw ×X − azx axw
azy
×Y + ϵw

By canceling out
▸ Z ⊥⊥P W
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Violation of faithfulness (2/2)

Example 2: Determinism
Consider

X YZ

where
▸ Z = ϵz

▸ X = azx ×Z + ϵx

▸ Y = axy ×Z

By determinism
▸ X ⊥⊥P Z ∣ Y
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Finding skeleton and v-structures

Theorem (faithfulness, adjacencies and v-structures) If P(V) is
faithful to some directed acyclic graph, then P(V) is faithful to
directed acyclic graph G with vertex V iff:
▸ For X ,Y ∈ V, X and Y are adjacent iff ∀S ⊆ V/{X ,Y},

X /⊥⊥P Y ∣ S;
▸ For X ,Y ,Z ∈ V such that X is adjacent to Z and Z is

adjacent to Y and X and Y are not adjacent, X → Z ← Y in
G iff ∀S ∈ V/{X ,Y} such that Z ∈ S, X /⊥⊥P Y ∣ S.

(proof on board)

▸ Point 1 can be used to discover the skeleton of G from
P(V);

▸ Given the skeleton of G, point 2 can be used to find all
v-structures.
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Orientation rules

R1:
X

YZ

X

YZ

R2:
X

YZ

X

YZ

R3:
X

YZ

W X

YZ

W
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Orientation rules correctness

Pattern A pattern of a DAG G is a graph with the same skeleton
as G but where only v-structures are oriented.

Theorem (orientation soundness) Given a pattern of some
DAG, the three orientation rules R1, R2, R3 are sound.
(proof on board)

Theorem (orientation completeness) The result of recursively
applying rules R1, R2, R3 to a pattern of some DAG is a
CPDAG.
(proof in (Meek, 1995))
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The SGS algorithm

Algorithm 1 SGS
Input: P(V)
Output: CPDAG G∗

1: Form the complete undirected graph G∗ on vertex set V
2: for all X −Y in G∗

and subsets S ⊆ V/{X ,Y} do
3: if ∃S ⊆ V/{X ,Y} such that X ⊥⊥P Y ∣ S then
4: Delete edge X −Y from G∗

5: end if
6: end for
7: for all X −Z −Y in G∗ such that X /∈ Adj(Y ,G) do
8: if /∃ S ⊆ V/{X ,Y} such that Z ∈ S and X ⊥⊥P Y ∣ S then
9: Orient X → Z ← Y in G∗

10: end if
11: end for
12: Recursively apply rules R1-R3 until no more edges can be oriented
13: Return G∗

Adj(Y ,G): Adjacencies of Y in G
Assaad, Devijver, Gaussier Causal discovery: constraint-based methods 20 / 78



Correctness of SGS

Theorem (correctness) Assume the distribution P(V) is Markov
and faithful to some DAG G and assume that we are given
perfect conditional independence information about all pairs of
variables. Let G∗ be the CPDAG of G. The SGS algorithm
returns G∗.

Proof: By Theorem (faithfulness, adjacencies and v-structures),
Theorem (orientation soundness) and Theorem (orientation
completness).
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Computational complexity of SGS

Running time of SGS depends exponentially on the number of
vertices in the graph:
▸ For all pairs check all subsets;
▸ For all triples check all subsets.

Assaad, Devijver, Gaussier Causal discovery: constraint-based methods 22 / 78



A better approach?

Optimizing the procedure for skeleton construction

By the Parental Markov condition:

X /∈ Adj(Y ,G) iff X ⊥⊥P Y ∣ Parents(X ,G) or X ⊥⊥P Y ∣ Parents(Y ,G)

Since the graph G is unknown:
▸ The parent set is unknown ahead of time;
▸ We look at S ⊆ Adj(X ,G′) and S ′ ⊆ Adj(Y ,G′) for some G′

which is a supergraph of the true unknown skeleton;
▸ We can pursue an iterative strategy such that we increase

the size of S iteratively.
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A better approach?

Optimizing the procedure for finding v-structures

Lemma (either d-sep or d-connect) Given the distribution P(V)
that is Markov and faithful to some DAG G, if Z ∈ Adj(X ,G),
Z ∈ Adj(Y ,G) and Y /∈ Adj(X ,G), then either Z is in every set of
variables that d-separates X and Y or it is in no set of variables
that d-separates X and Y .
(proof on board)

sepset(X ,Y ): subset that permitted the separation of X and Y
during the skeleton construction.

R0: For all triples X −Z −Y ∈ G∗ such that Y /∈ Adj(X ,G∗), if
Z /∈ sepset(X ,Y ) then orient X → Z ← Y in G∗.
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during the skeleton construction.

R0: For all triples X −Z −Y ∈ G∗ such that Y /∈ Adj(X ,G∗), if
Z /∈ sepset(X ,Y ) then orient X → Z ← Y in G∗.
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The PC algorithm

Algorithm 2 PC
Input: P(V)
Output: CPDAG G∗

1: Form the complete undirected graph G∗ on vertex set V
2: Let n = 0
3: repeat
4: for all X −Y in G∗ such that ∣Adj(X ,G∗)∣ ≥ n

and subsets S ⊆ Adj(X ,G∗)/{Y} such that ∣S∣ = n do
5: if X ⊥⊥P Y ∣ S then
6: Delete edge X −Y from G∗

7: Let sepset(X ,Y ) = sepset(Y ,X) = S
8: end if
9: end for

10: Let n = n + 1
11: until for each pair of adjacent vertices (X ,Y ), ∣Adj(X ,G∗)/{Y}∣ ≤ n
12: Apply R0
13: Recursively apply rules R1-R3 until no more edges can be oriented
14: Return G∗
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PC in action (1/3)

▸ Suppose the true graph on right;
▸ Assumptions: CMC, faithfulness, causal

sufficiency.

A

B C

D E

F

G
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PC in action (2/3)

Skeleton construction:

A

B C

D E

F

G

Initialization

A

B C

D E

F

G

∣S∣ = 0

A

B C

D E

F

G

∣S∣ = 1
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PC in action (3/3)

Orientation:

A

B C

D E

F

G

R0

A

B C

D E

F

G

R1

A

B C

D E

F

G

R2

A

B C

D E

F

G

R1
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Correctness of PC

Theorem (correctness) Assume the distribution P(V) is Markov
and faithful to some DAG G and assume that we are given
perfect conditional independence information about all pairs of
variables. Let G∗ be the CPDAG of G. The PC algorithm returns
G∗.
(proof on board)
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Computational complexity of PC

Running time of PC depends exponentially on the maximal
degree of the graph but for a fixed maximal degree running
time over the number of vertices is polynomial.
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Exercise 1

Consider data that are generated from a chain X → Y → Z .
Assuming that all assumptions are satisfied, which CPDAG
would a constraint based causal discovery algorithm report?

If you could supply prior knowledge to the algorithm on only
one arc that is required to be present, what arc (if any) would
allow the entire structure to be learned? Explain briefly.
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Exercise 2

Consider data that truly come from a fork X ← Y → Z .
Assuming that all assumptions are satisfied, which CPDAG
would a constraint based causal discovery algorithm report?

If you could supply prior knowledge to the algorithm on only
one arc that is required to be present, what arc (if any) would
allow the entire structure to be learned? Explain briefly.
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Exercise 3

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency, no

deterministic relations;
▸ Generative process:

Z = ξz ξz ∼ N(0,1);
X = a ∗Z + ξx ξx ∼ N(0,1);
Y = b ∗Z + ξy ξy ∼ N(0,1);

W = c ∗X −
a ∗ c

b
∗Y + ξw ξw ∼ N(0,1).

▸ Given a compatible distribution what would
be the output of the PC algorithm?

Z

X Y

W
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Exercise 4

▸ Suppose the true graph on right;
▸ Assumptions: CMC, causal sufficiency,

deterministic relations, no canceling out
paths;

▸ Given a compatible distribution what would
be the output of the PC algorithm?

Z

X Y

W
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Exercise 5

▸ Suppose the true graph on right;
▸ Assumptions: CMC, faithfulness;
▸ Given a compatible distribution what would

be the output of the PC algorithm if Z is
unobserved?

Z

X Y

W
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Latent variables (1/2)

Consider G = (V,E) with vertices V = O ∪L such that
▸ O observable variables;
▸ L latent variables.

Latent variables are represented by a transparent border.
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Latent variables (2/2)

Assuming acyclicity, if two observed variables X and Y are
statistically dependent:

X Y X Y

X Y

L

X Y

L

X Y

L

L2

X Y

L2

X Y

L2

X Y

L2

L1

X Y

L2

L1

X Y

L2

L1

X Y
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Main structures (1/2)

Y

X

Z W

Y-structure

Z ⊥⊥P W
Z /⊥⊥P W ∣ X

Y /⊥⊥P Z
Y ⊥⊥P Z ∣ X

Y /⊥⊥P W
Y ⊥⊥P W ∣ X

L

Y

X

Z W
Z ⊥⊥P W

Z /⊥⊥P W ∣ X
Y /⊥⊥P Z

Y /⊥⊥P Z ∣ X
Y /⊥⊥P W

Y /⊥⊥P W ∣ X

Pattern of independence can rule out latent confounding.
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Main structures (2/2)

L

WZ X Y

W-structure

Z /⊥⊥P X
X /⊥⊥P Y
Y /⊥⊥P W
Z ⊥⊥P W
Z ⊥⊥P Y
X ⊥⊥P W

Z /⊥⊥P Y ∣ X
X /⊥⊥P W ∣ Y

WZ X Y

Z /⊥⊥P X
X /⊥⊥P Y
Y /⊥⊥P W
Z ⊥⊥P W
Z /⊥⊥P Y
X ⊥⊥P W

Z ⊥⊥P Y ∣ X
X /⊥⊥P W ∣ Y

Pattern of independence can suggest latent confounding.
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Graphical representation of causal graphs with latent
counfounding

▸ DAGs are not sufficient to represent a graph over O alone;
▸ Acyclic directed mixed graphs (ADMG) are sufficient to

represent a graph over O alone.

Acyclic directed mixed graphs: Given a DAG G = (V,E) such
that V = O ∪L, the corresponding ADMG isM= (V ′,E ′) with
V ′ = O such that for any X ,Y ∈ O:
▸ X → Y inM if there exists a directed path from from X to

Y in G;
▸ X ↔ Y inM if there exists a path π from X to Y of the

form X ← ⋯→ Y such that:
▸ ∀W ∈ π, W ∈ L or W ∈ {X ,Y};
▸ there is no colliders on π.
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m-seperation

m-separation In a mixed graphM, a path π between vertices X
and Y is active (m-connecting) relative to a possibly empty set
of vertices S such that X ,Y /∈ S if:
▸ Every non-collider on π is not a member of S;
▸ Every collider on π has descendant in S.

X and Y are said to be m-separated by S, i.e. X ⊥⊥M Y ∣ S if
there is no active path between X and Y relative to S.

For any disjoint sets of vertices X ,Y,Z ⊂ O:

X ⊥⊥M Y ∣ Z Ô⇒ X ⊥⊥P Y ∣ Z

X ⊥⊥M Y ∣ Z ⇐⇒ X ⊥⊥G Y ∣ Z
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Mixed graphs limitations

▸ In ADMG Markov equivalence is complicated;
▸ ADMG are not maximal:

Maximality A graph is maximal if for every pair of vertices
X and Y

X /∈ Adj(Y ,M) Ô⇒ ∃S ⊆ V/{X ,Y} such that X ⊥⊥P Y ∣ S.

▸ Ô⇒ ADMGs cannot be learned in PC-style procedure.
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DAGs to ADMG examples

DAG ADMG
X Z Y X Z Y

X Y

L

X Y

X Z Y

L

X Z Y

W T Z Y

L

W T Z Y
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Inducing path

Inducing path: An inducing path relative to L is a path on which
every vertex not in L except the endpoints is a collider on the
path and every collider is an ancestor of an endpoint of the
path.

W T Z Y

L

W and Y have an inducing path relative to L.
Theorem (inducing path implies d-connection): If G = (V,E) is
DAG such that V = O ∪L. X and Y are not d-seperated by a
subset S ⊆ O/{X ,Y} iff there is an inducing path relative to L
between X and Y .
(proof in (Spirtes et al, 2000))
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Maximal ancestral graphs

Maximal ancestral graphs1: Given a DAG G = (V,E) such that
V = O ∪L, the corresponding MAG isM= (V ′,E ′) with V ′ = O
such that for any X ,Y ∈ O:
▸ For each pair of vertices X ,Y ∈ O, X −Y inM iff there is

an inducing path between them relative to L in G;
▸ For each pair of adjacent vertices X −Y inM:

▸ X → Y if X is an ancestor of Y in G;
▸ Y → X if Y is an ancestor of X in G;
▸ X ↔ Y otherwise.

▸ MAGs do not contain any directed and almost directed
cycles (ancestrality);

▸ In a MAG there is no inducing path between any two
non-adjacent vertices (maximality).

1MAGs can also handle selection bias by using undirected edges.
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MAGs interpretation, advatanges and limitation

Interpretation:
▸ X → Y in a MAG: X is an ancestor of Y in the underlying

DAG;
▸ X ↔ Y in a MAG: X is not an ancestor of Y and Y is not

an ancestor of X , which means there is a hidden
coufounder between X and Y .

Advatanges:
▸ Markov equivalence is possible;
▸ They are maximal;
▸ They have some properties of ADMG:

For any disjoint sets of vertices X ,Y,Z ⊂ O:

X ⊥⊥M Y ∣ Z Ô⇒ X ⊥⊥P Y ∣ Z

X ⊥⊥M Y ∣ Z ⇐⇒ X ⊥⊥G Y ∣ Z

▸ Ô⇒ MAGs can be learned in PC-style procedure!
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DAGs to MAGs examples

DAG MAG
X Z Y X Z Y

X Y

L

X Y

X Z Y

L

X Z Y

W T Z Y

L

W T Z Y

MAGs are less informative than ADMGs.
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Discriminating path

Discriminating path: In a MAG, a path between X and Y ,
π =< X ,⋯,W ,Z ,Y >, is a discriminating path for Z if:
▸ π includes at least three edges;
▸ Z is a non-endpoint vertex on π;
▸ X is not adjacent to Y , and every vertex between X and Z

is a collider on π and is a parent of Y .

X ⋯ ⋯ W Z

Y

X ⋯ ⋯ W Z

Y
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Markov equivalence classes for MAGs

Theorem (Markov equivalence for MAGs) Two MAGsM1 and
M2 are Markov equivalent (have the same m-separations) iff:
▸ They have the same adjacencies;
▸ They have the same v-structures;
▸ If a path π is a discriminating path for a vertex Z in both

graphs, then Z is a collider on the path in one graph iff it is
a collider on the path in the other.

(proof in (Spirtes and Richardson, 1997))
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A characterization of Markov equivalence classes for
MAGs

Maximally informative partial ancestral graph (MIPAG) Let [M]
be the Markov equivalence class of a MAGM. A MIPAGM∗

for [M] is a graph with possibly three kinds of marks and
hence six kinds of edges:

−,→,↔, ○−, ○−○, ○→

such that:
▸ M∗ has the same adjacencies asM (and any member of
[M]);

▸ Every non-circle mark inM∗ is an invariant mark in [M];
▸ Every circle inM∗ corresponds to a variant mark in [M].
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dsep sets

In MAGs, X ⊥⊥P Y ∣ S such that S ⊆ O
/Ô⇒ X ⊥⊥P Y ∣ Parents(X ,M) or X ⊥⊥P Y ∣ Parents(Y ,M)

C

H

F

D

B

E

A
A /⊥⊥P E ∣ B,D
A ⊥⊥P E ∣ B,D,F
A ⊥⊥P E ∣ B,D,H

dsep set: Z ∈ dsep(X ,Y ) iff there is an undirected path
between X and Z on which every vertex except the endpoint is
a collider, and each vertex is an ancestor of X or Y .
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Possible dsep sets

Given a pair of vertices X ,Y , how to find the d-sep sets without
examining every subset of O/{X ,Y}?

Possible-d-sep set (pds): Z ∈ pds(X ,Y ) iff there is an
undirected path π between X and Z such that every subpath
< A,B,C > on the path is either a v-structure or form a triangle.

If there exists S ⊆ O/{X ,Y} such that X ⊥⊥ Y ∣ S in MAGM
then S ∈ pds(X ,Y ,M).
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Orientation rules

X

YZ

X

YZ

R0′: for all X ∗−○Z ○−∗Y inM∗ s.t. Y /∈ Adj(X ,M∗), if
Z /∈ sepset(X ,Y ) then orient X∗→ Z ←∗Y inM∗.

Asterix (*) represents a wildcard that denotes any of the three marks.
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Orientation rules (1/4)

R1′:
X

YZ

X

YZ

R2′:
X

YZ

X

YZ

R3′:
X

YZ

W X

YZ

W

Asterix (*) represents a wildcard that denotes any of the three marks.
R2′ also works if X∗→ Z → Y .
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Orientation rules (2/4)

R4′:
X ⋯ ⋯ W Z

Y

X ⋯ ⋯ W Z

Y

X ⋯ ⋯ W Z

Y
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Orientation rules (3/4)

Uncovered potentially directed path: In a MIPAG, a path
π =< V0,⋯,Vn > is an uncovered potentially directed path if:
▸ For every 1 ≤ i ≤ n − 1, Vi−1 and Vi+1 are non adjacent;
▸ For every 0 ≤ i ≤ n − 1, the edge between Vi and Vi+1 is not

into Vi or out of Vi+1.
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Orientation rules (4/4)

R8′:
X

YZ

X

YZ

R9′:
⋯

YX

⋯ ⋯

YX

⋯

R10′: YX

A Z

B W

YX

A Z

B W

R5′-R7′ are used to detect selection bias.
R8′ also works if X −○Z → Y .
Dotted lines represents uncovered potentially directed path.
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Orientation rules correctness

Pattern A pattern of a MAGM is a graph with the same
skeleton as G but where only v-structures are oriented.

Theorem (orientation soundness) Given a pattern of some
MAG, the three orientation rules R1′, R2′, R3′, R4′, R8′, R9′,
R10′ are sound.
(proof on board)

Theorem (orientation completeness) The result of recursively
applying rules R1′, R2′, R3′, R4′, R8′, R9′, R10′ to a pattern of
some MAG is a MIPAG.
(proof in (Zhang, 2008))
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The FCI algorithm

Algorithm 3 FCI
Input: P(V)
Output: MIPAGM∗

1: Form the complete graphM∗ on vertex set V with ○−○ edges
2: Let n = 0
3: repeat
4: for all X ○−○Y inM∗ s.t. ∣Adj(X ,M∗)∣ ≥ n and subsets S ⊆ Adj(X ,M∗)/{Y} s.t. ∣S∣ = n do
5: if X ⊥⊥P Y ∣ S then
6: Delete edge X ○−○Y fromM∗

7: Let sepset(X ,Y ) = sepset(Y ,X) = S
8: end if
9: end for

10: Let n = n + 1
11: until for each pair of adjacent vertices (X ,Y ), ∣Adj(X ,M∗)/{Y}∣ ≤ n
12: Apply R0′

13: for all X ∗−∗Y inM∗ and there exists S ∈ pds(X ,Y ,M∗) or S ∈ pds(Y ,X ,M∗) do
14: if X ⊥⊥P Y ∣ S then
15: Delete edge X ○−○Y fromM∗

16: Let sepset(X ,Y ) = sepset(Y ,X) = S
17: end if
18: end for
19: Reorient all edges as ○−○ and reapply R0′

20: Recursively apply rules R1′-R10′ until no more edges can be oriented
21: ReturnM∗
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FCI in action (1/4)

▸ Suppose the true graph below left and its corresponding
MAG below right;

▸ Assumptions: CMC, faithfulness.

C

H

F

D

B

E

A

L1

L2

C

H

F

D

B

E

A
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FCI in action (2/4)

C

H

F

D

B

E

A

Initialization

C

H

F

D

B

E

A

∣S∣ = 0

C

H

F

D

B

E

A

∣S∣ = 1
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FCI in action (3/4)

Finding possible-d-sep

C

H

F

D

B

E

A

R0′

C

H

F

D

B

E

A

pds
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FCI in action (4/4)

C

H

F

D

B

E

A

R0′
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Correctness of FCI

Theorem (correctness) Assume the distribution P(V) is Markov
and faithful to some MAGM and assume that we are given
perfect conditional independence information about all pairs of
variables. LetM∗ be the MIPAG ofM. The FCI algorithm
returnsM∗.
(proof in (Zhang, 2008))
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Computational complexity of FCI

Running time of FCI is greater than the Running time of PC:
▸ computing pds sets;
▸ testing conditional independence given all subsets of the

pds sets.
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Exercise 6

▸ Suppose the true MAG on the right;
▸ Assumptions: CMC, faithfulness;
▸ Given a compatible distribution what would

be the output of the FCI algorithm?

Z

X Y

W
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Conditional independence tests

With finit data, SGS, PC and FCI needs a procedure for
deciding whether X ⊥⊥P Y ∣ S.

In practice, test the null hypothesis:

H0 ∶ X ⊥⊥P Y ∣ S

and reject the null hypothesis if some test statistic T (x) < α,
where α is a user-specified significance threshold. That is, if we
reject the null hypothesis, we keep the edge, and if we fail to
reject, we remove the edge.
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Examples of conditional independence tests

Tests Assumptions

Fisher Z-transform Linear, gaussian
χ2 test Multinomial discrete

Kernel-based CI test -
Local permutation test -
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Consistency

Theorem (consistency) Assume the distribution P(V) is Markov
and faithful to some DAG G. Let G∗ be the CPDAG of G and let
Ĝ∗ be the output of SGS, PC with some consistent conditional
independence test and significative level α. Then there is a
sequence of αn → 0(n →∞) such that limn→∞ Pr(Ĝ∗ = G∗) = 1.
(proof in (Spirtes et al, 2000))

Same result for FCI on MIPAG.
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(proof in (Spirtes et al, 2000))

Same result for FCI on MIPAG.

Assaad, Devijver, Gaussier Causal discovery: constraint-based methods 71 / 78



Exercise 7

As the significance level is lowered to 0, what would you expect
to happen to the graph skeleton learned by constraint based
causal discovery algorithms? As the significance level is
increased to 1? Explain.
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Conclusion

▸ Under faithfulness and causal sufficiency constraint-based
methods can discover a CPDAG (SGS, PC).

▸ Under faithfulness and causal sufficiency constraint-based
methods can discover a MIPAG (FCI).

▸ Advantages:
▸ Nonparametric (in principle);
▸ PC and FCI are relatively scalable;
▸ Lots of work on improvements.

▸ Drawbacks:
▸ Cannot discover the entire true graph;
▸ Faithfulness is not testable;
▸ Cannot parallelize;
▸ No confidence intervals;
▸ Individual errors may propagate.
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Some extensions

▸ Incorporating background knowledge;
▸ Order independent;
▸ Selection bias (R5’-R7’ in FCI);
▸ Really fast FCI;
▸ Time series.
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