Back-door and front-door criterions

Charles K. Assaad, Emilie Devijver, Eric Gaussier

charles.assaad@ens-lyon.fr

Table of content

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Table of content

Preliminaries

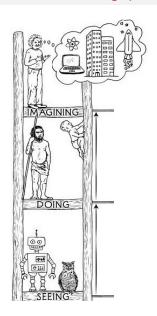
Identifiability in Markovian models

The back-door criterion

The front-door criterior

Conclusion

Causal reasoning (1/2)

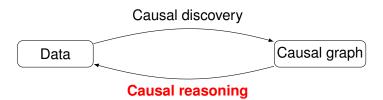


Counterfactuals

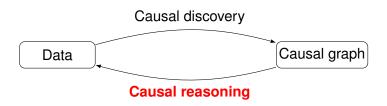
Interventions

Associations

Causal reasoning (2/2)

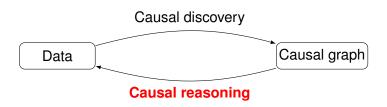


Causal reasoning (2/2)



Goal: Estimate the causal effect or effect of an intervention.

Causal reasoning (2/2)



Goal: Estimate the causal effect or effect of an intervention.

It is not always possible.

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- ▶ it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z.

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d-separated* by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp\!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

Active and blocked paths A path is said to be *blocked* by a set of vertices $\mathcal{Z} \in \mathcal{V}$ if:

- ▶ it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in \mathcal{Z}$, or
- it contains a collider A → B ← C such that no descendant of B is in Z.

d-separation Given disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq \mathcal{V}$, we say that \mathcal{X} and \mathcal{Y} are *d-separated* by \mathcal{Z} if every path between a node in \mathcal{X} and a node in \mathcal{Y} is blocked by \mathcal{Z} and we write $\mathcal{X} \perp\!\!\!\perp_{\mathcal{G}} \mathcal{Y} \mid \mathcal{Z}$.

Conditioning vs intervention

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$$

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$$

Conditioning vs intervention

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$$

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$$

Conditioning vs intervention

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$$

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$$

Conditioning vs intervention

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr_{X_3 = off}(X_1, X_2, X_4, X_5)$$

$$Pr(X_1, X_2, X_4, X_5 | X_3 = off) \text{ vs } Pr(X_1, X_2, X_4, X_5 | do(X_3 = off))$$

Bayesian network factorization:

$$Pr(V_1 = V_1, \dots, V_d = V_d) = \prod_i Pr(V_i = V_i \mid Parents(V_i))$$

Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(V_i = v_i \mid Parents(V_i))$$

if v_1, \dots, v_d are values consistant with the intervention, else.

$$Pr(V_1 = V_1, \dots, V_d = V_d \mid do(S = S)) = 0$$

Bayesian network factorization:

$$Pr(V_1 = V_1, \dots, V_d = V_d) = \prod_i Pr(V_i = V_i \mid Parents(V_i))$$

Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(V_1 = v_1, \dots, V_d = v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(V_i = v_i \mid Parents(V_i))$$

if v_1, \dots, v_d are values consistant with the intervention, else,

$$Pr(V_1 = V_1, \dots, V_d = V_d \mid do(S = S)) = 0$$

Bayesian network factorization:

$$Pr(v_1, \dots, v_d) = \prod_i Pr(v_i | Parents(v_i))$$

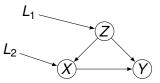
Truncated factorization: if we intervene on a subset $S \subset V$, then

$$\Pr(v_1, \dots, v_d \mid do(S = s)) = \prod_{i \notin S} \Pr(v_i \mid Parents(V_i))$$

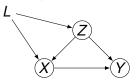
if v_1, \dots, v_d are values consistant with the intervention, else.

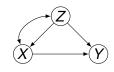
$$\Pr(v_1, \dots, v_d \mid do(s)) = 0$$

Markovian models: A model M is Markovian if the graph induced by M contains no bidirected edges (the graph is a DAG).



Semi-Markovian models: A model M is semi-Markovian if the graph induced by M contains bidirected edges (the graph is a ADMG).





Causal effect identifiability

The causal effect $\Pr(y \mid do(x))$ from a causal graph \mathcal{G} is identifiable if $\Pr(y \mid do(x))$ can be computed uniquely from observational data.

Table of content

Preliminaries

Identifiability in Markovian models

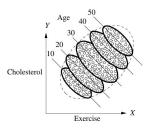
The back-door criterion

The front-door criterion

Conclusion

Simpson paradox 1

In a study, we measure weekly exercise and cholesterol levels for various age groups.

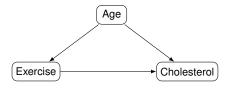


What is the effect of exercise on cholesterol $Pr(c \mid do(e))$?

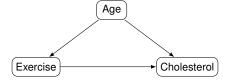
Simpson paradox 1

In a study, we measure weekly exercise and cholesterol levels for various age groups.

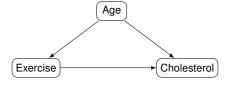
What is the effect of exercise on cholesterol $Pr(c \mid do(e))$?



 $Pr(c \mid do(e))$?

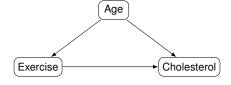


 $Pr(c \mid do(e))$?



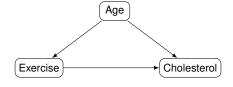
$$Pr(a, e, c) = Pr(a) Pr(e \mid a) Pr(c \mid a, e)$$
 (BN fact.)

 $Pr(c \mid do(e))$?



$$\Pr(a, e, c) = \Pr(a) \Pr(e \mid a) \Pr(c \mid a, e)$$
 (BN fact.)
$$\Pr(a, c \mid do(e)) = \Pr(a) \Pr(c \mid a, e)$$
 (Truncated fact.)

$$Pr(c \mid do(e))$$
?



$$Pr(a, e, c) = Pr(a) Pr(e \mid a) Pr(c \mid a, e)$$

$$Pr(a, c \mid do(e)) = Pr(a) Pr(c \mid a, e)$$

$$Pr(c \mid do(e)) = \sum_{a} Pr(a) Pr(c \mid a, e)$$

(BN fact.)

(Truncated fact.)

(marginalizing)

Identifiabilty in Markovian models

Theorem (identifiabilty in Markovian models): Given a causal graph \mathcal{G} of any Markovian model in which a subset \mathcal{V} of variables are measured, the causal effect $\Pr(y \mid do(x))$ is identifiable whenever $\{X \cup Y \cup Parents(X)\} \subseteq \mathcal{V}$, and is given by the direct causes adjustment:

$$Pr(y \mid do(x)) = \sum_{z \in Parents(x)} Pr(y \mid x, z) Pr(z)$$

(proof on board)

Limitations of the direct causes adjustment

In Markovian models, is it possible to find a smaller adjustment set?

What about semi-Markovian models?

Table of content

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterion

Conclusion

Back-door criterion

The back-door criterion: Consider a causal graph \mathcal{G} and a causal effect $P(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the back-door criterion iff:

- ▶ no node in Z is a descendant of X;
- Z blocks every path between X and Y that contains an arrow into X.

Back-door adjustment

Theorem (back-door adjustment): If \mathcal{Z} satisfies the back-door criterion relative to (X, Y) and if $\Pr(x, z) > 0$, then the causal effect of X on Y is identifiable and is given by

$$\Pr(y \mid do(x)) = \sum_{z} \Pr(y \mid x, z) \Pr(z).$$

(proof on board)

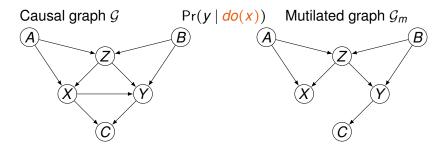
Back-door adjustment

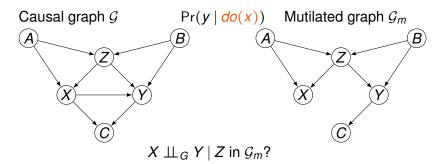
Theorem (back-door adjustment): If \mathcal{Z} satisfies the back-door criterion relative to (X, Y) and if $\Pr(x, z) > 0$, then the causal effect of X on Y is identifiable and is given by

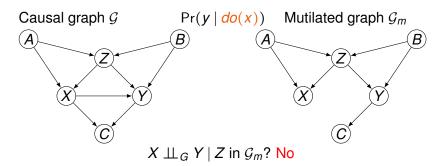
$$Pr(y \mid do(x)) = \sum_{z} Pr(y \mid x, z) Pr(z).$$

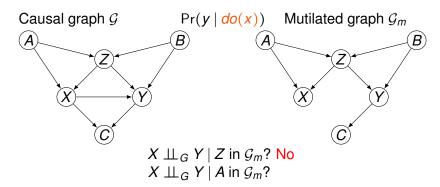
(proof on board)

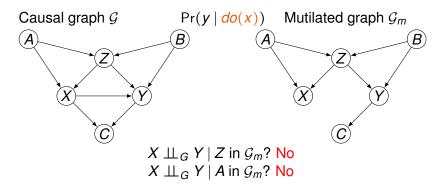
Property (back-door in Markovian models): The causal effect in Markovian models is always identifiable using the back-door criterion and is given by the back-door adjustment. proof as an exercise

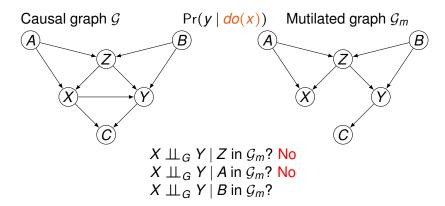


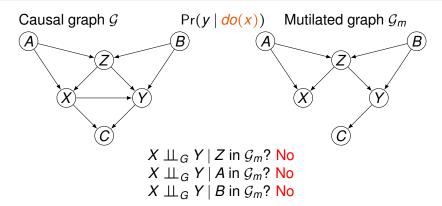


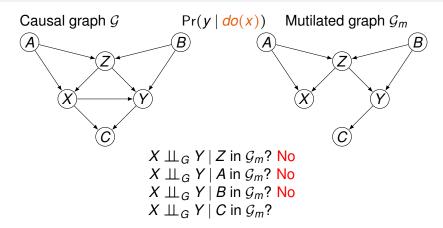


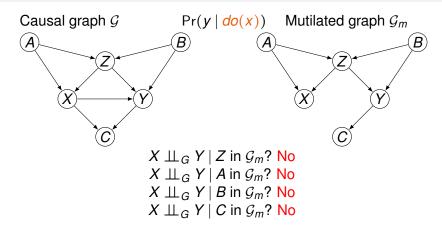


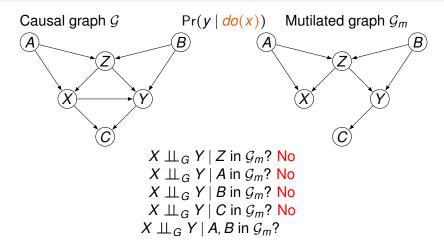


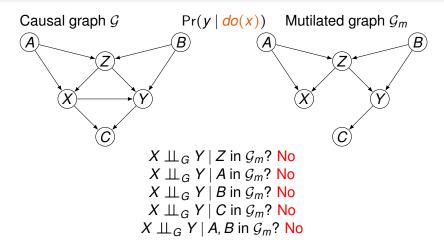


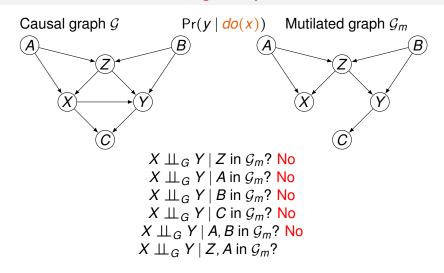


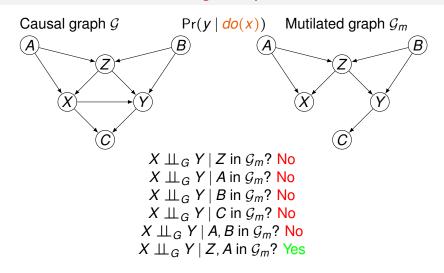


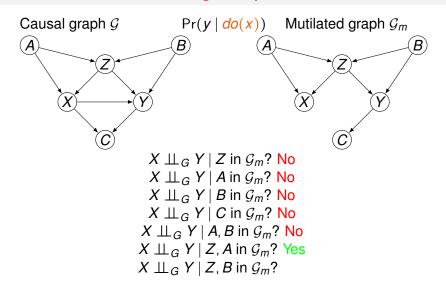


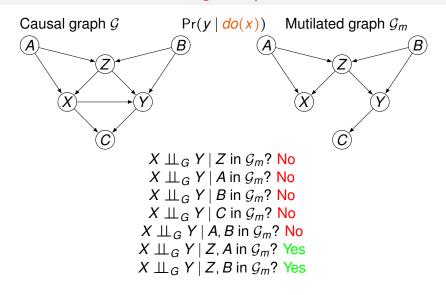


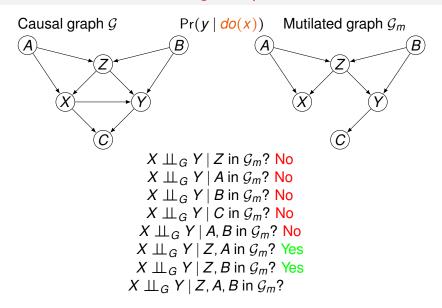


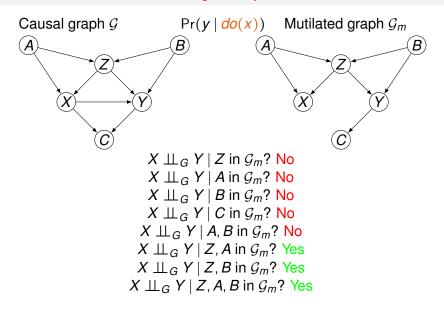


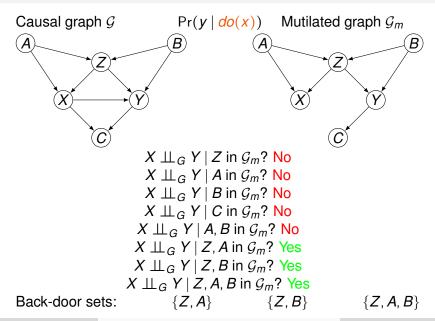






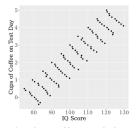






Simpson paradox 2 and the back-door in action

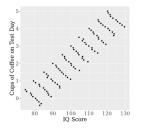
In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.



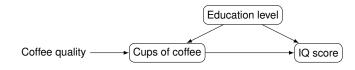
What is the effect of the nb cups of coffee on IQ score $Pr(i \mid do(c))$?

Simpson paradox 2 and the back-door in action

In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.

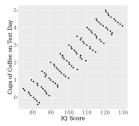


What is the effect of the nb cups of coffee on IQ score $Pr(i \mid do(c))$?

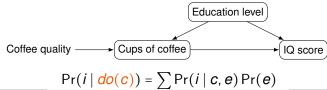


Simpson paradox 2 and the back-door in action

In a study, we measure the number of coffee intake, IQ score for a sample of a population with various education level.



What is the effect of the nb cups of coffee on IQ score $Pr(i \mid do(c))$?



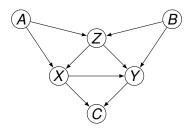
Incompleteness of the back-door criterion

If there exists a set that satisfy the back-door criterion for Pr(y | do(x)), then Pr(y | do(x)) is identifiable;

If there exists a no set that satisfy the back-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is not necesarly not identifiable.

Exercise 1

- Consider the following causal graph. List all minimal sets of variables that satisfy the back-door criterion for Pr(y | do(x));
- Repeat for $Pr(y \mid do(x, b))$.



Minimal set: any set of variables such that if you remove any of the variables from the set, it will no longer meet the criterion.

Table of content

Preliminaries

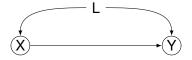
Identifiability in Markovian models

The back-door criterion

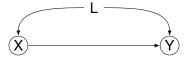
The front-door criterion

Conclusion

Consider the following semi-Markovian model. Is $Pr(y \mid do(x))$ identifiable using the backdoor criterion?

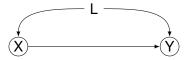


Consider the following semi-Markovian model. Is $Pr(y \mid do(x))$ identifiable using the backdoor criterion?



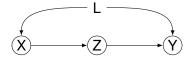
No and it cannot be identified by any other criterion.

Consider the following semi-Markovian model. Is $Pr(y \mid do(x))$ identifiable using the backdoor criterion?

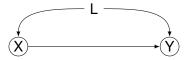


No and it cannot be identified by any other criterion.

What about the following semi-Markovian model?

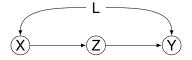


Consider the following semi-Markovian model. Is $Pr(y \mid do(x))$ identifiable using the backdoor criterion?

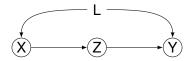


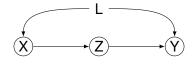
No and it cannot be identified by any other criterion.

What about the following semi-Markovian model?



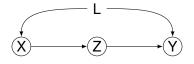
No but it can be identified by some other criterion.





$$Pr(z \mid do(x)) = Pr(z \mid x)$$

(No back-door)

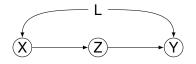


 $Pr(z \mid do(x)) = Pr(z \mid x)$

(No back-door)

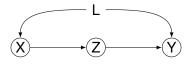
$$Pr(y \mid do(z)) = \sum_{x} Pr(y \mid z, x) Pr(x)$$

(X blocks the back-door)



 $Pr(z \mid do(x)) = Pr(z \mid x)$

- (No back-door)
- $Pr(y \mid do(z)) = \sum_{X} Pr(y \mid z, X) Pr(X)$ (X blocks the back-door)
- $Pr(y \mid do(x)) = \sum_{z} Pr(y \mid do(z)) Pr(z \mid do(x))$ (Law of total proba.)



 $Pr(z \mid do(x)) = Pr(z \mid x)$

- (No back-door)
- $Pr(y \mid do(z)) = \sum_{X} Pr(y \mid z, X) Pr(X)$ (X blocks the back-door)
- $Pr(y \mid do(x)) = \sum_{z} Pr(y \mid do(z)) Pr(z \mid do(x))$ (Law of total proba.)

$$\Pr(y \mid \frac{do(x)}{}) = \sum_{z} \Pr(z \mid x) \sum_{x'} \Pr(y \mid z, x') \Pr(x')$$

Front-door criterion

Front-door criterion: Consider a causal graph \mathcal{G} and a causal effect $\Pr(y \mid do(x))$. A set of variables \mathcal{Z} satisfies the front-door criterion iff:

- Z intercepts all directed paths from X to Y;
- ► There is no back-door path from X to Z;
- All back-door paths from Z to Y are blocked by X.

Front-door adjustment

Theorem (front-door adjustment): if \mathcal{Z} satisfies the front-door criterion relative to (X, Y) and if $\Pr(x, z) > 0$, then the causal effect of X on Y is identifiable and is given by

$$\Pr(y \mid \frac{do(X = x)}{do(X = x)}) = \sum_{z} \Pr(z \mid x) \sum_{x'} \Pr(y \mid x', z) \Pr(x').$$

(proof on slide 25)

Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

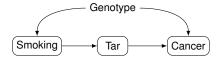
What is the effect of smoking on cancer $Pr(c \mid do(s))$?

Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

What is the effect of smoking on cancer $Pr(c \mid do(s))$?

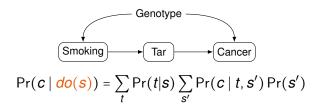


Simpson paradox 3 and the front-door in action

In a study, we measure the tar and the % of cancer among smokers and non smokers in a randomly selected sample of the population.

Smokers	Tar	% of cancer
No	No	10
No	Yes	5
Yes	No	90
Yes	Yes	85

What is the effect of smoking on cancer $Pr(c \mid do(s))$?



Incompleteness of the front-door criterion

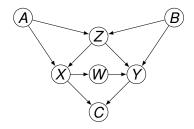
▶ If there exists a set that satisfy the front-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is identifiable;

If there exists a no set that satisfy the fack-door criterion for $Pr(y \mid do(x))$, then $Pr(y \mid do(x))$ is not necesarly not identifiable.

The combination of the back-door and front door criterions are also incomplete.

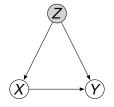
Exercise 2

Consider that in the following causal graph, only X and Y, and one additional variable can be measured. Which variable would allow the identification of $Pr(y \mid do(x))$?

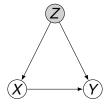


Exercise 3

Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

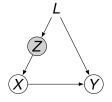


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

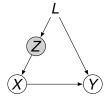


➤ Z blocks a back-door path
 ⇒ Z is a good control.

Assaad, Devijver, Gaussier

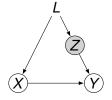


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

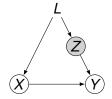


➤ Z blocks a back-door path
 ⇒ Z is a good control.

Assaad, Devijver, Gaussier

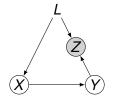


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

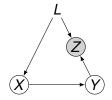


➤ Z blocks a back-door path
 ⇒ Z is a good control.

Assaad, Devijver, Gaussier

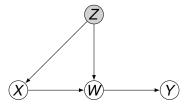


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

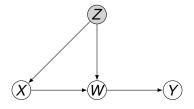


Z activates a back-door path
 ⇒ Z is a bad control.

Assaad, Devijver, Gaussier

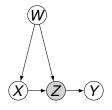


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

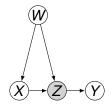


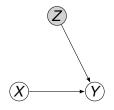
Assaad, Devijver, Gaussier

Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

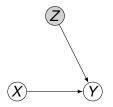


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?



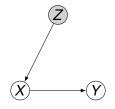


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

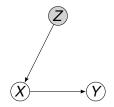


Z does not open any backdoor paths from X to Y
 Z is a neutral control;

Controlling for Z can reduces the variation of Y, and helps improve the precision of the estimate in finite samples.

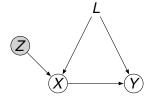


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

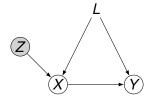


Z does not open any backdoor paths from X to Y
 Z is a neutral control;

Controlling for Z can reduces the variation of X and so may hurt the precision of the estimate in finite samples.

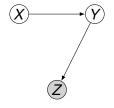


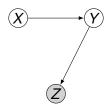
Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?



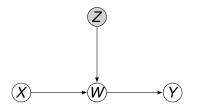
Z does not block existing backdoor path from X to Y
 Z is a bad control;

▶ In linear models, controlling for Z amplify any existing bias.

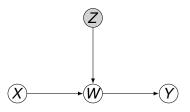




- Selection bias
 - \implies Z is a bad control.

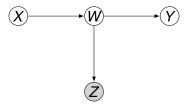


Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?

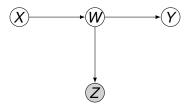


Z does not open any backdoor paths from X to Y
 Z is a neutral control;

Controlling for Z can reduces the variation of W, and helps improve the precision of the estimate in finite samples.



Is Z a good, bad or neutral control for $Pr(y \mid do(x))$?



Z is a descendant of X
 Z is a bad control.

Table of content

Preliminaries

Identifiability in Markovian models

The back-door criterion

The front-door criterior

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models:
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

- Markovian models are always identifiable (using direct causes or the back-door adjustment);
- Semi Markovian models are not always identifiable;
- The back-door adjustment can identify some causal effects in semi Markovian models;
- The front-door adjustment can identify some causal effects in semi Markovian models;
- the back-door and front-door adjustments are not complete.

References (1/2)

Direct inspirations

- Causality, J. Pearl. Cambridge University Press, 2nd edition, 2009
- Causal inference in statistics: A Primer, J. Pearl, M. Glymour, N. P. Jewell. Wiley, 2019
- 3. The book of why, J. Pearl, D. Mackenzie. Basic Books, 2018

References (2/2)

Additional readings

- A Crash Course in Good and Bad Control, C. Cinelli, A. Forney,
 J. Pearl. Sociological Methods and Research, 2022
- Simpson's paradox in psychological science: A practical guide, R. Kievit, W. Frankenhuis, L. Waldorp, D. Borsboom. Frontiers in Psychology, 2013