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1
Preliminaries



Reminder: Causal DAGs

A causal DAG G = (V,E) is a directed acyclic graph where
V is the set of vertices representing random variables.
E is the set of directed edges representing causal
relations between these variables.

G should be compatible with the probability distribution of V,
meaning:

Not all DAGs are causal!

Basic structures:
Fork

A C B
Chain

A C B

V-structure
A C B
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Reminder: Blocked path and d-separation

A path is said to be blocked by a set of vertices Z ∈ V if:
it contains a chain A→ B→ C or a fork A← B→ C and
B ∈ Z; or
it contains a collider A→ B← C such that no descendant
of B is in Z.

Given disjoint sets X,Y,Z ⊆ V, we say that X and Y are
d-separated by Z if every path between a vertex in X and a
vertex in Y is blocked by Z and we write X⊥⊥G Y | Z.

X⊥⊥G Y | Z⇒ X⊥⊥P Y | Z
but X⊥̸⊥G Y | Z ̸⇒ X⊥̸⊥P Y | Z
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What if the causal DAG is unknown?

Causal reasoning

Machine learning

Estimation

Data

Causal effect Identification

Causal DAG

Causal discovery
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2
Constraint-based causal discov-
ery



Families of causal discovery methods

Causal discovery

Constraint-based Noise-based Score-based Other

Constraint-based: run local tests of independence to create
constraints on space of possible graphs.
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Causal discovery using conditional independencies

Given observational data, is it possible to infer a causal DAG
using conditional independencies?

In general no!

We cannot even construct the skeleton of the graph because
⊥̸⊥P ̸ =⇒⊥̸⊥G
⊥⊥P ̸ =⇒⊥⊥G

Diabetic ke-
toacidosis

Bad breath Coma

Smoking Exercice

Health

a2

−a1 a1
a2
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Additional assumptions

Causal sufficiency: No hidden confounding.

Faithfulness: All conditional independence relations true in P
are entailed by the d-separation applied to G.

=⇒ A⊥⊥G B | S ⇐⇒ A⊥⊥P B | S

Given observational data, is it possible to infer a causal DAG
using conditional independencies under the assumptions of
faithfulness and causal sufficiency?

In general no!
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Markov equivalence class [7]

Equivalence in terms of conditional independence

X Y X Y X YZ

X YZ X YZ X YZ

Theorem
Two causal DAGs are Markov equivalent iff they have the same
skeleton and the same V-structures.

All equivalent graphs can be represented by a completed
partially DAG (CPDAG)
This CPDAG is called the representative of the Markov
equivalence class

X Y X YZ X YZ
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Finding skeleton and v-structures

Given observational data, is it possible to infer a CPDAG using
conditional independencies under the assumptions of
faithfulness and causal sufficiency?

Yes!

Theorem
If P(V) is faithful to some causal DAG G with vertex V then:

For X, Y ∈ V, X and Y are adjacent iff ∀S ⊆ V\{X, Y},
X⊥̸⊥P Y | S;

For X, Y, Z ∈ V such that X is adjacent to Z and Z is
adjacent to Y and X and Y are not adjacent, X → Z← Y in
G iff ∀S ⊆ V\{X, Y} such that Z ∈ S, X⊥̸⊥P Y | S.

Point 1 can be used to discover the skeleton of G from
P(V);
Given the skeleton of G, point 2 can be used to find all
v-structures.
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Meek orientation rules [3]

Suppose we already found the skeleton and all v-structures:

Meek-Rule 1:
X

YZ

X

YZ

Meek-Rule 2:
X

YZ

X

YZ

Meek-Rule 3:
X

YZ

W

X

YZ

W
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The PC algorithm [6]

Step 1: skeleton construction:
▶ Construct a complete non oriented graph
▶ Prune unnecessary edges (optimal) from the skeleton

using⊥⊥P

Step 2: orientation
▶ Find all V-structures
▶ Meek-Rule 1, 2, 3: deduce other orientations by

contradiction to V-structures and acyclicity

Theorem ([6])
Assume the distribution P is compatible and faithful to some
causal DAG G and assume that we are given perfect conditional
independence information about all pairs of variables. The PC
algorithm returns the CPDAG of G.
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The optimal strategy of the PC algorithm [6]

Pruning unnecessary edges in optimal way:
use a sequential conditioning strategy, where the size of
the conditioning set increases progressively from 1 to p-2
the conditioned set is the subset of the set of variables
adjacent to tested variables
storing the separation sets, which can later be used for
orienting v-structures and other triplets
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PC in action

Suppose the causal DAG on the right
Input: Observational data
Output: CPDAG
Assumptions: causal sufficiency, faithfulness

A

B C

D

E

Skeleton construction:
A

B C

D

E

card = 0

A

B C

D

E

card = 1

A

B C

D

E

card = 2
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PC in action
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Incorporating background knowledge

The PC algorithm can effectively incorporate background
knowledge in the form of:

Forbidden edges
Required edges
Forbidden orientations
Required orientations
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Real application of PC [4]

MSW students (N = 127); 61 item survey (Likert Scale)

Specified graph

Stress Depression

Relegious coping

+

−+

S3

S4

S16

S18

S20

D9

D13

D19

R9 R12 R14 R15
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Inferred graph (assuming stress is temporally prior)
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Beyond causal sufficiency (1/2)

Y

X

Z W

Y-structure

Z⊥⊥P W
Z⊥̸⊥P W | X
Y⊥̸⊥P Z

Y ⊥⊥P Z | X
Y⊥̸⊥P W

Y ⊥⊥P W | X

L
Y

X

Z W Z⊥⊥P W
Z⊥̸⊥P W | X
Y⊥̸⊥P Z

Y⊥̸⊥P Z | X
Y⊥̸⊥P W

Y⊥̸⊥P W | X

Pattern of independence can rule out hidden confounding.
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Beyond causal sufficiency (2/2)

L

WZ X Y

W-structure
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A glimpse of the FCI algorithm

The FCI algorithm extends the PC algorithm to accommodate
hidden confounders:

Skeleton construction is much more complicated;
Orientation is done using 10 different rules.

The FCI algorithm in action:

C
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D

B

E
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L1
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True graph
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A

Inferred graph
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Pros and cons of constraint-based methods

Pros:
Non-parametric (in practice, it depends on the selected
independence test)
Intuitive

Cons:
Recover a partially oriented graph
The faithfulness assumption is not always accepted
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3
Noise-based causal discovery



Noise based

Causal discovery

Constraint-based Noise-based Score-based Other

Noise-based: find footprints in the noise that imply causal
asymmetry.
Also known as semi-parametric-based or functional-based.
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The intuition behind the noise (1/2)

Suppose
{
X := ξx

Y := 2X + ξy

Given P(X, Y), one can detect X− Y but what about orientation?

Y := 2X + ξy ?
or

Without further assumption we cannot know.

X := Y
2 + ξ̂x?

Assume that the noise follow a uniform distribution on
{−1,0, 1}

X Y ξy = Y − 2X ξ̂x = X − Y/2
1 2 0 ∈ {−1,0, 1} 0 ∈ {−1,0, 1}
3 6 0 ∈ {−1,0, 1} 0 ∈ {−1,0, 1}
4 9 1 ∈ {−1,0, 1} −0.5 ̸∈ {−1,0, 1}
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The intuition behind the noise (2/2)

X Y

ξx ξy

M1 :
{
X := fx(ξx)
Y := fy(X, ξy)

X⊥⊥G ξy
Y⊥̸⊥G ξx
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The experiment that changed everything

Suppose

X Y

ξx ξy

X ∼ N(0, 1)
ξy ∼ N(0, 1)
Y := 2X + ξy

X ∼ U(0, 1)
ξy ∼ U(0, 1)
Y := 2X + ξy
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The linear case (1/2)

X Y

ξx ξy

True model:

M1 :
{
X := ξx

Y := aX + ξy
X⊥⊥P ξy

Backwards model:

M2 :
{
Y := ξ̂y

X := bY + ξ̂x

Y ⊥⊥P ξ̂x?

ξ̂x = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy

Causal discovery Noise-based causal discovery 25 / 37



The linear case (1/2)

X Y

ξx ξy

True model:

M1 :
{
X := ξx

Y := aX + ξy
X⊥⊥P ξy

Backwards model:

M2 :
{
Y := ξ̂y

X := bY + ξ̂x

Y ⊥⊥P ξ̂x?

ξ̂x = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy

Causal discovery Noise-based causal discovery 25 / 37



The linear case (1/2)

X Y

ξx ξy

True model:

M1 :
{
X := ξx

Y := aX + ξy
X⊥⊥P ξy

Backwards model:

M2 :
{
Y := ξ̂y

X := bY + ξ̂x

Y ⊥⊥P ξ̂x?

ξ̂x = X − bY
= X − b(aX + ξy)
= (1− ba)X − bξy

Causal discovery Noise-based causal discovery 25 / 37



The linear case (1/2)

X Y

ξx ξy

True model:

M1 :
{
X := ξx

Y := aX + ξy
X⊥⊥P ξy

Backwards model:

M2 :
{
Y := ξ̂y

X := bY + ξ̂x

Y ⊥⊥P ξ̂x?
ξ̂x = X − bY

= X − b(aX + ξy)
= (1− ba)X − bξy

Causal discovery Noise-based causal discovery 25 / 37



The linear case (2/2)

Y = aX + ξy
ξ̂x = (1− ba)X − bξy

When Y ⊥⊥P ξ̂x ?

Theorem (Darmois-Skitovich)
Let X1, · · · , Xn be independent, non degenerate random
variables. If for two linear combinations:

l1 = a1X1 + · · ·+ anXn
l2 = b1X1 + · · ·+ bnXn

are independent, then each Xi is normally distributed.
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Linear non-Gaussian models (LiNGAM) [5]

Theorem
Assume that P(X, Y) admits the linear model

Y := aX + ξy, X⊥⊥P ξy,

with continuous random variables X, ξy , and Y. Then there
exists b ∈ R and a random variable ξ̂x such that

X := bY + ξ̂x, Y ⊥⊥P ξ̂x,

iff ξy and X are Gaussian.

Similar result for the multivariate case
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A glimpse of LiNGAM in action

Suppose the causal DAG on the right
Input: Observational data
Output: Causal DAG
Assumptions: causal sufficiency, minimality,
linearity, non-gaussianity

A

B C

D

E

Causal order:

A

B C

D

E

Pruning:

A

B C

D

E
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Real application of LiNGAM [2]

Young and middle-aged adults (N = 2,060); self-administered
questionnaire for TV time

Specified graphs

TV time BMI

TV time Waist circumference
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Real application of LiNGAM [2]

Young and middle-aged adults (N = 2,060); self-administered
questionnaire for TV time

Inferred graphs

TV time BMI

TV time Waist circumference
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Extensions

LiNGAM with hidden confounding
Non-linear additive noise models
Post non-linear additive noise models
...
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Pros and cons of noise-based methods

Pros:
Recover the complete causal DAG

Cons:
Semi-parametric
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Exercise

What is the CPDAG of the following causal DAG?
A

B C

D E

F

G
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Exercise

What will be the output of PC if A = B?
A

B C

D E

F

G
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4
Additional notes



Practical considerations

To be specified:
The introduced implementation of PC is order dependent,
however there exists order independent implementation
introduced by [1]
A conditional independence measure and test
(constaint-based)
An independece measure and tests (noise-based)
A significance level in the statistical tests (constaint-based
and noise-based)
Optional: Existing expert knowledge (temporal ordering,
forbiden orientations,...)
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Usefulness of causal discovery when assumptions
are violated

If assumptions are violated, then most causal discovery
methods would give a Bayesian network
=⇒ this Bayesian network could be used for the selection of
the variables for the prediction task.
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5
Conclusion



Conclusion

In general, a causal DAG cannot be discovered from
observational data alone.
However, it can be discovered under certain untestable
assumptions.
If you can construct the causal DAG manually based on
domain knowledge, then avoid using causal discovery
methods (except for prediciton).
Causal discovery is useful only when the causal DAG is
unknown and needs to be inferred from data.
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Causal discovery references

"Review of causal discovery methods based on graphical
models" by Clark Glymour, Kun Zhang, and Peter
Spirtes,2019
"Causal discovery algorithms: A practical guide" by Daniel
Malinsky and David Danks, 2018
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