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1
INTRODUCTION



“EVERYDAY” CAUSALITY

When I drop my pen, it falls.

Necessary association: the pen always falls if I drop it.
Specific association: the pen falls only if I drop it.
Immediate association: the pen falls immediately if I drop it.

) Causal relationship is simple to demonstrate.
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CAUSALITY IN EPIDEMIOLOGY

Now imagine:

When I drop the pen, sometimes it falls, sometimes it doesn’t. When it
falls, it only does so 5 years after being dropped.
When I don’t drop the pen, it still sometimes falls (but less often).

) Dropping the pen changes the probability that the pen will fall in 5 years.

Most causal relationships in epidemiology are neither necessary, specific,
nor immediate.

Causal relationship? Yes, but more difficult to demonstrate.
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PRESENTATION OF THE SAMPLE

A: medication taken (A = 1) or not taken
(A = 0)
Y : disease cured (Y = 1) or not cured
(Y = 0)
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SIMON

Simon took the medication and the
disease was cured.
Did the medication cause the cure? We
don’t know. Why?

Because we need to know what Simon
would become without the medication.
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POTENTIAL COUNTERFACTUAL OUTCOME

A denotes the observed treatment
Y denotes the observed outcome
Y A=a denotes the potential outcome with the therapeutic alternative
A = a:
I Y A=0 = Y 0 is the outcome we would observe if the medication is not

taken
I Y A=1 = Y 1 is the outcome we would observe if the medication is

taken

Only one of the values Y 0 and Y 1 is observed:
I if A = 0, Y 0 is observed
I if A = 1, Y 1 is observed

The outcome we do not observe is called the counterfactual outcome

Suppose we could observe the unobservable…
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POTENTIAL COUNTERFACTUAL OUTCOME

Simon took the medication and the
disease was cured: Y = Y 1 = 1

If Simon had not taken the medication,
the disease would not have been cured:
Y 0 = 0

For Simon, the medication has a causal
effect
What about the others?
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POTENTIAL COUNTERFACTUAL OUTCOME

The individual causal effect is defined by
Y 1 � Y 0

It is not necessarily the same for all
individuals
(because they are not pens being
dropped)
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POTENTIAL COUNTERFACTUAL OUTCOME

In reality, we never observe both Y 0 AND Y 1,
but rather A and Y
) The individual causal effect is unknown

Let’s try to be less ambitious then
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POPULATION CAUSAL EFFECT

A ‘less ambitious’ causal effect is the population, or marginal, causal effect:

E(Y 1)� E(Y 0)

In the case of a binary outcome:

E(Y 1)� E(Y 0) = P r(Y 1 = 1)� P r(Y 0 = 1)
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POTENTIAL COUNTERFACTUAL OUTCOME

We have :

P r(Y 1 = 1) = 5=14

P r(Y 0 = 1) = 5=14

P r(Y 1 = 1)� P r(Y 0 = 1) = 0

) no population level causal effect
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POPULATION CAUSAL EFFECT

‘Less ambitious’, perhaps, but…
We cannot calculate P r(Y 1 = 1)� P r(Y 0 = 1) for the same
reasons we cannot calculate Y 1 � Y 0

This is the fundamental problem of causal inference

‘Doing’ causal inference means seeking to estimate quantities from observed
data, which serve as reasonable substitutes for unobservable quantities
(such as P r(Y 1 = 1) and P r(Y 0 = 1), which involve counterfactual
outcomes).
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CRUDE ESTIMATION OF THE POPULATION CAUSAL EFFECT

What could be substitutes for P r(Y 1 = 1) and P r(Y 0 = 1)?
The most obvious substitutes are P r(Y = 1jA = 1) and
P r(Y = 1jA = 0)

These quantities serve as good substitutes if those who took or did not
take the medication are exchangeable) Y 0 and Y 1 independent of
A

This would notably be the case if medication intake were random)
This is why randomized controlled trials are the gold standard for
therapeutic evaluation
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CRUDE ESTIMATION OF THE POPULATION CAUSAL EFFECT

8 individuals out of 14 took the medication.

We ‘know’ that P r(Y 1 = 1) = 5=14

We estimate that
P r(Y = 1jA = 1) = 2=8

Likewise:

We ‘know’ that P r(Y 0 = 1) = 5=14

We estimate that
P r(Y = 1jA = 0) = 1=6

Finally:

We know that
P r(Y 1 = 1)� P r(Y 0 = 1) = 0

We estimate that
P r(Y = 1jA = 1)�

P r(Y = 1jA = 0) = 1=12

Causal estimation Potential counterfactual outcome, and causal inference Population-level causality 14 / 128



CRUDE ESTIMATION OF THE POPULATION CAUSAL EFFECT

P r(Y = 1jA = 1)� P r(Y = 1jA = 0) = 1=12

If association implied causality, then we would conclude that the
medication has a favorable effect.
Besides chance (i.e., sampling fluctuations), what could explain the
observed association, other than a causal effect?

lack of exchangeability
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INITIAL SEVERITY

L : Initial severity of the disease (L = 1 in
case of severity)
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EXCHANGEABILITY?

Among individuals L = 1:
P r(A = 1jL = 1) = 6=9

Among individuals L = 0:
P r(A = 1jL = 0) = 2=5

Thus, individuals with a severe initial disease
are more likely to take the medication.
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EXCHANGEABILITY?

Among individuals L = 1 :
P r(Y 0 = 1jL = 1) = 3=9

Among individuals L = 0 :
P r(Y 0 = 1jL = 0) = 2=5

So, in the absence of medication, individuals
with a severe initial disease are less likely to
be cured.
(and the same applies with Y 1)
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INITIAL SEVERITY

What does L represent in the relationship between A and Y ?

) a confounding factor

Causal estimation Potential counterfactual outcome, and causal inference Confounding 19 / 128



INITIAL SEVERITY

What does L represent in the relationship between A and Y ?

) a confounding factor

Causal estimation Potential counterfactual outcome, and causal inference Confounding 19 / 128



STRATIFICATION ON INITIAL SEVERITY

Among individuals L = 1 :

P r(Y = 1jA = 1 \ L = 1) = 2=6

P r(Y = 1jA = 0 \ L = 1) = 1=3

Among individuals L = 0 :

P r(Y = 1jA = 1 \ L = 0) = 0=2

P r(Y = 1jA = 0 \ L = 0) = 0=3

So, within each stratum of severity, we find no
association between medication intake and
favorable outcome
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STRATIFICATION ON INITIAL SEVERITY

We have seen that individuals with A = 1 and A = 0 are not
exchangeable, due to a severity imbalance
But, let’s assume that within each severity stratum, individuals with
A = 1 and A = 0 are exchangeable
This is called the conditional exchangeability assumption (according to
L)
In this situation, the association between A and Y has a causal
interpretation within each severity stratum L

Under the conditional exchangeability assumption (conditionally on L),
we find no causal effect of medication intake on recovery in each of
the strata
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SUMMARY I

In epidemiology, cause-effect relationships are generally neither
necessary, nor specific (nor immediate)
Counterfactual reasoning allows defining what is called the causal
effect
At the individual level, the causal effect is unknown
At the population level, the causal (marginal) effect is unknown, but
can be estimated under certain assumptions
In the absence of exchangeability (i.e., outside of a randomized
controlled trial), an association cannot be interpreted causally
In our example, the apparent association was only related to the open
path between A and Y passing through L

A Y

L
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SUMMARY II

This leads us to define the causal effect in terms of counterfactual
interventions For example: what would be the average difference in a
population if we gave everyone intervention A = 1 versus everyone
intervention A = 0?

Population

vs.

What we would like to see

vs.

What we observe

The connection with a randomized controlled trial is direct: an
observational analysis should seek to estimate a quantity similar to
what would have been estimated in a randomized trial (referred to as
trial emulation)
Counterfactual notations such as Y A=a are just a way of expressing
what we seek to identify
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SUMMARY III

The conditional exchangeability assumption is one of the fundamental
assumptions for interpreting associations causally in observational
settings
In practice, there is rarely only one confounding factor
Causal inference in observational settings therefore requires
identifying a group of variables (L1, L2, L3, etc.) for which there is
conditional exchangeability
This requires specialized knowledge about the diseases under study
Causal diagrams (cf. Charles Assaad’s course) are a valuable tool for
identifying these variables (or questioning conditional exchangeability)
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WHAT’S NEXT

Stratification is a simple and effective method for accounting for a
categorical confounding factor
It quickly becomes impractical, if not unusable, when trying to account
for many factors, or continuous factors
In the following sections, we will see a method (standardization) that
can be seen as a direct extension of the counterfactual reasoning
We will then introduce methods based on propensity score
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FUNDAMENTAL ASSUMPTIONS OF CAUSAL INFERENCE IN OBSERVATIONAL
SETTINGS

1) Absence of interference
2) Consistency
3) Conditional exchangeability
4) Positivity
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ABSENCE OF INTERFERENCE

The exposure of one individual does not affect the potential outcome of
another individual.

Example of situations where the assumption may be violated:
Situations where the exposure is ‘shared’

Vaccination: the vaccination of one individual may influence the
likelihood of infection in another individual
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CONSISTENCY

The potential outcome of an individual, if they were to receive the observed
exposure, is equal to the observed outcome1:

Y A=a = Y for individuals where A = a

Example of situations where the assumption may be violated:
Situations where the exposure has multiple ‘versions’

Obesity: obesity vs no obesity. But is the potential outcome the same if
BMI = 40 vs BMI = 50?
Surgery: surgery vs no surgery. But is the potential outcome the same
if experienced surgeon vs beginner surgeon?

This highlights the importance of well defined interventions2

1Equivalent to accept that the data are generated by a structural causal model
2See “Does water kill?” https://doi.org/10.1016%2Fj.annepidem.2016.08.016
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CONDITIONAL EXCHANGEABILITY

1) Exchangeability (in randomized trials)

Whether actually exposed or not, the potential outcome remains unchanged
! Y 0 and Y 1 are independent of A: Y a ? A 8 a 2 (0; 1)

Then,
E(Y ajA = 1) = E(Y ajA = 0) 8 a 2 (0; 1)

2) Conditional exchangeability (or ignorability3) (in observational studies)

! Y 0 and Y 1 are independent of A conditional on L:
Y a ? AjL 8 a 2 (0; 1)

Then,

E(Y ajA = 1; L = l) = E(Y ajA = 0; L = l) 8 a 2 (0; 1) 8 l

3Equivalent to the assumption that there exists a set of variables that satisfies the
backdoor criterion
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POSITIVITY

All individuals in the population of interest have a non-zero probability of
being exposed and unexposed.

P r(A = ajL = l) > 0 8 a 2 (0; 1) 8 l

Will be further discussed later.
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AVERAGE TREATMENT EFFECT (ATE)

We have already defined the population marginal effect by
E(Y 1)� E(Y 0). It is a difference of two means
From now, we refer to it as average treatment effect or ATE
In the case where Y is binary, E(Y a) is a probability, so ATE is a risk
difference: RD = P r(Y 1 = 1)� P r(Y 0 = 1)

In the case where Y is binary, other measures of association are
frequently used, including:
Risk ratio: RR = E(Y 1)=E(Y 0) = P r(Y 1 = 1)=P r(Y 0 = 1)

Odds ratio: OR = E(Y 1)
1�E(Y 1)

= E(Y 0)
1�E(Y 0)

= P r(Y 1=1)
1�P r(Y 1=1)

= P r(Y 0=1)
1�P r(Y 0=1)

In the following, we will mainly focus on the risk difference.
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IDENTIFIABILITY OF THE MARGINAL CAUSAL EFFECT IN A RANDOMIZED
TRIAL

Why does randomization work?

ATE = E(Y 1)� E(Y 0)

1) Exchangeability
) E(Y a) = E(Y ajA = a) 8 a 2 (0; 1)

Both groups (A = 1 and A = 0) are representative of the same
(entire) population

2) Consistency
) E(Y ajA = a) = E(Y jA = a) 8 a 2 (0; 1)

Thus:
ATE = E(Y jA = 1)� E(Y jA = 0)

Causal effect in the entire population, directly estimable by comparing the
average outcome of each group.
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IDENTIFIABILITY OF THE MARGINAL CAUSAL EFFECT IN AN OBSERVATIONAL
STUDY

1) Conditional Exchangeability
) E(Y ajL = l) = E(Y ajA = a; L = l) 8 a 2 (0; 1) 8 l

Both groups (A = 1 and A = 0) are representative of the same
population within each stratum l

2) Consistency
) E(Y ajA = a; L = l) = E(Y jA = a; L = l) 8 a 2 (0; 1) 8 l

Thus:
ATEl = E(Y jA = 1; L = l)� E(Y jA = 0; L = l)

Causal effect in each stratum defined by the value L = l
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IN A RANDOMIZED TRIAL

We have already shown that in an experimental situation, thus in the
absence of confounders:

ATE = E(Y jA = 1)� E(Y jA = 0) = �

Rearranging terms:

E(Y jA = 1) = E(Y jA = 0) + �

Noting a 2 (0; 1):

E(Y jA = a) = E(Y jA = 0) + �a

E(Y jA = a) = �+ �a

We obtain a simple linear regression model on Y :
� is the ATE, and �̂ is its estimate
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IN AN OBSERVATIONAL STUDY

In an observational study, with a confounding factor L:

ATEl = E(Y jA = 1; L = l)� E(Y jA = 0; L = l) = �l

Rearranging terms:

E(Y jA = a; L = l) = E(Y jA = 0; L = l) + �la

E(Y jA = a; L = l) = (�+ 
l) + (� + �l)a

�+ 
l : stratum-specific intercept (
l depends on the value l )
� + �l : ATEl , stratum-specific effect (�l depends on the value l )

We obtain a linear regression model adjusted on L, including an
interaction term between A and L

ATEl is estimated by �̂ + �̂l

If L is not an effect modifier (if the interaction �l = 0), then
ATEl = ATE = � (causal effect identical in all strata)
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IN AN OBSERVATIONAL STUDY

The previous regression model allows estimating the stratum-specific
effect ATEl , which we call conditional effect of exposure A
(conditional on the value l )
To obtain it, we estimate a linear regression model including an
interaction term between A and L:
E(Y jA;L) = �+ 
L+ �A+ �A� L

This model generalizes to multiple confounding factors:
E(Y jA = a; L1; L2; : : : ) =

�+ 
1L1 + 
2L2 + � � �+ �A+ �1A� L1 + �2A� L2 + : : :

The validity of conditional estimates depends on:
I the validity of the fundamental assumptions of causal inference
I the proper specification of the model
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MARGINAL EFFECT VS CONDITIONAL EFFECT

So far we have seen:

randomized trials, which allow estimating the population-level
marginal causal effect ATE
observational studies, which allow estimating the stratum-specific (or
conditional) causal effects ATEl

How can we estimate the population-level marginal effect in an
observational study?
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STANDARDIZATION I

The population-level marginal effect is the weighted average of the
conditional effects:

ATE =
∑
l

ATEl � P r(L = l)

The weights are P r(L = l), directly reflecting the distribution of L in
the population
Example:
I effect in men: ATEh = 1
I effect in women: ATEf = 2
I if 2=3 of the population are men:

ATE = 1� 2

3
+ 2� 1

3
= 4

3
� 1:33

Again, if L is not an effect modifier, ATE = ATEl = �

Example:
I ATEh = ATEf = 2, still 2=3 of the population are men
I ATE = 2� 2

3
+ 2� 1

3
= 6

3
= 2
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STANDARDIZATION II

The estimation of ATE is obtained by replacing all these quantities with
their estimates in the analyzed sample:

[ATE =
∑
l

(�̂ + �̂l)� P̂ r(L = l)

This process is called standardization (or marginalization) (or
G-computation)
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ATE VS ATT

ATE is the marginal causal effect in the entire population:
ATE = E(Y 1)� E(Y 0)

Literally, it represents the difference in average outcomes if the
population were entirely exposed vs if the population were not
exposed to the treatment of interest
Another interesting question: what would be the difference in average
outcomes of the exposed individuals if they hadn’t been exposed?
This is called the average treatment effect on the treated (ATT):

ATT = E(Y 1jA = 1)� E(Y 0jA = 1)

(in a randomized controlled trial, ATE = ATT )
Literally, it represents the difference in average outcomes if the population of
treated individuals had ultimately not been exposed to the treatment of
interest
Formally, it is a conditional average treatment effect (CATE), conditional on
receiving the treatment
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IDENTIFIABILITY OF ATT IN AN OBSERVATIONAL STUDY

Still relies on the fundamental assumptions
I Since the population of interest is the entire group of treated

individuals, the positivity assumption is only required in this
subpopulation: P r(A = ajL = l ; A = 1) > 0 8 a 2 (0; 1) 8 l

Can be obtained by standardizing the conditional effects:

ATT =
∑
l

ATEl � P r(L = l ; A = 1)

The weights are P r(L = l ; A = 1) here reflecting the distribution of
L in the subpopulation of treated individuals
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WHAT ABOUT THE UNTREATED?

Similarly, one might wonder what would be the difference in average
outcomes of the non-exposed individuals if they had been exposed?
This is called the average treatment effect on the controlled (ATC):

ATC = E(Y 1jA = 0)� E(Y 0jA = 0)

(in a randomized controlled trial, ATE = ATT = ATC)
The identifiability conditions are symmetrical (see previous slide, with A = 0)
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REVISITING STANDARDIZATION

Standardization also allows obtaining the average counterfactual
outcome with either of the treatment alternatives:

E(Y a) =
∑
l

E(Y jA = a; L = l)� P r(L = l) 8 a 2 (0; 1)

By replacing with estimates:

Ê(Y a) =
∑
l

Ê(Y jA = a; L = l)P̂ r(L = l) 8 a 2 (0; 1)

Then, we can estimate the marginal effect with different measures of
association:
D̂R = Ê(Y 1)� Ê(Y 0) (=

∑
l(�̂ + �̂l)� P̂ r(L = l))

R̂R = Ê(Y 1)=Ê(Y 0)

ÔR = Ê(Y 1)

1�Ê(Y 1)
= Ê(Y 0)

1�Ê(Y 0)
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IN SHORT

OK, so practically, how do we do it?

Causal estimation Standardization Standardization: general method 44 / 128



ALGORITHM TO ESTIMATE ATE

In a sample of size n:
1) Estimate a regression model on Y adjusted for confounders

L = L1; L2; : : : separately by exposure
I One model for individuals who received the treatment (A = 1):

E(Y jA = 1) � �0 + �1L1 + �2L2 + : : :
I One model for individuals who did not receive the treatment (A = 0):

E(Y jA = 0) � �0 + �1L1 + �2L2 + : : :
I (Equivalent to a single model including all interactions A� Lk )

2) Predict potential outcomes for each individual i
I For each individual i , calculate Ŷ1;i according to the model for A = 1
I For each individual i , calculate Ŷ0;i according to the model for A = 0

3) Calculate the average predictions
Ê(Y 1) =

∑n
i=1 Ŷ1;i=n and Ê(Y 0) =

∑n
i=1 Ŷ0;i=n

4) Estimate the desired measure of association
D̂R = Ê(Y 1)� Ê(Y 0) R̂R = Ê(Y 1)=Ê(Y 0)

ÔR = Ê(Y 1)

1�Ê(Y 1)
= Ê(Y 0)

1�Ê(Y 0)
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I One model for individuals who did not receive the treatment (A = 0):

E(Y jA = 0) � �0 + �1L1 + �2L2 + : : :
I (Equivalent to a single model including all interactions A� Lk )

2) Predict potential outcomes for each individual i
I For each individual i , calculate Ŷ1;i according to the model for A = 1
I For each individual i , calculate Ŷ0;i according to the model for A = 0

3) Calculate the average predictions
Ê(Y 1) =

∑n
i=1 Ŷ1;i=n and Ê(Y 0) =

∑n
i=1 Ŷ0;i=n

4) Estimate the desired measure of association
D̂R = Ê(Y 1)� Ê(Y 0) R̂R = Ê(Y 1)=Ê(Y 0)

ÔR = Ê(Y 1)

1�Ê(Y 1)
= Ê(Y 0)

1�Ê(Y 0)
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ALGORITHM TO ESTIMATE ATE

Ê(Y 1) =
∑n

i=1 Ŷ1;i=n

Ê(Y 0) =
∑n

i=1 Ŷ0;i=n
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ALGORITHM TO ESTIMATE ATT

In a sample of size n:

1) Step 1 remains unchanged

2) Step 2 remains unchanged

3) Calculate the average predictions among exposed individuals

Ê(Y 1jA = 1) =

∑n

i=1
Ŷ1;i�A∑n

i=1
A

and Ê(Y 0jA = 1) =

∑n

i=1
Ŷ0;i�A∑n

i=1
A

4) Estimate the desired measure of association
D̂R = Ê(Y 1jA = 1)� Ê(Y 0jA = 1)

R̂R = Ê(Y 1jA = 1)=Ê(Y 0jA = 1)

ÔR = Ê(Y 1jA=1)

1�Ê(Y 1jA=1)
= Ê(Y 0jA=1)

1�Ê(Y 0jA=1)
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ALGORITHM TO ESTIMATE ATT

Ê(Y 1jA = 1) =

∑n

i=1
Ŷ1;i�A∑n

i=1
A

Ê(Y 0jA = 1) =

∑n

i=1
Ŷ0;i�A∑n

i=1
A
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VARIANCE ESTIMATION

The previous algorithm allows for easily estimating the marginal effect
‘by hand’, as we will see in an example
The variance of this estimation is less straightforward to obtain and
must be estimated using an appropriate method
I delta method (for example, using the R package marginaleffects)
I bootstrap
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DATABASE lalonde I

library("cobalt")
data("lalonde", package = "cobalt")
str(lalonde)

## 'data.frame': 614 obs. of 9 variables:
## $ treat : int 1 1 1 1 1 1 1 1 1 1 ...
## $ age : int 37 22 30 27 33 22 23 32 22 33 ...
## $ educ : int 11 9 12 11 8 9 12 11 16 12 ...
## $ race : Factor w/ 3 levels "black","hispan",..: 1 2 1 1 1 1 1 1 1 3 ...
## $ married : int 1 0 0 0 0 0 0 0 0 1 ...
## $ nodegree: int 1 1 0 1 1 1 0 1 0 0 ...
## $ re74 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ re75 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ re78 : num 9930 3596 24909 7506 290 ...
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DATABASE lalonde II

A data frame with 614 observations (185 treated, 429 control). There are 9
variables measured for each individual.

‘treat‘ is the treatment assignment (1=treated, 0=control).
age is age in years.
educ is education in number of years of schooling.
race is the individual’s race/ethnicity, (Black, Hispanic, or White).
married is an indicator for married (1=married, 0=not married).
nodegree is an indicator for whether the individual has a high school
degree (1=no degree, 0=degree).
re74 is income in 1974, in U.S. dollars.
re75 is income in 1975, in U.S. dollars.
‘re78‘ is income in 1978, in U.S. dollars.

‘treat‘ is the treatment variable, ‘re78‘ is the outcome, and the others are
pre-treatment covariates.
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Y CONTINUOUS, ‘BY HAND’

mod1 <- lm(re78 ~ age + educ + race + married + nodegree + re74,
data = subset(lalonde, treat == 1)) ## model among treat = 1

mod0 <- lm(re78 ~ age + educ + race + married + nodegree + re74,
data = subset(lalonde, treat == 0)) ## model among treat = 0

## income predicted if treat = 1
y1ate <- predict(mod1, newdata = lalonde)
## income predicted if treat = 0
y0ate <- predict(mod0, newdata = lalonde)

mean(y1ate) - mean(y0ate) ## ATE

## [1] 1155.916

## income predicted if treat = 1 among treat = 1
y1att <- predict(mod1, newdata = subset(lalonde, treat == 1))
## income predicted if treat = 0 among treat = 1
y0att <- predict(mod0, newdata = subset(lalonde, treat == 1))

mean(y1att) - mean(y0att) ## ATT

## [1] 1691.123
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Y CONTINUOUS, WITH THE marginaleffects PACKAGE

library(marginaleffects)
mod <- lm(re78 ~ treat * (age + educ + race + married + nodegree + re74),

data = lalonde) # model with interactions
## ATE
avg_comparisons(mod, variables = "treat")

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
## treat mean(1) - mean(0) 1156 1023 1.13 0.258 2.0 -849 3161
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response

## ATT
avg_comparisons(mod, variables = "treat", newdata = subset(lalonde, treat == 1))

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
## treat mean(1) - mean(0) 1691 825 2.05 0.0403 4.6 75.1 3307
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response
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Y BINARY, ‘BY HAND’ I

lalonde$re78bin <- lalonde$re78 > 0 ## income > 0 ?
table(lalonde$re78bin)

##
## FALSE TRUE
## 143 471

## model among treat = 1
mod1 <- glm(re78bin ~ age + educ + race + married + nodegree + re74,

data = subset(lalonde, treat == 1), family = binomial)
## model among treat = 0
mod0 <- glm(re78bin ~ age + educ + race + married + nodegree + re74,

data = subset(lalonde, treat == 0), family = binomial)
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Y BINARY, ‘BY HAND’ II

## P(income > 0) predicted if treat = 1
y1ate <- predict(mod1, newdata = lalonde, type = "response")
## P(income > 0) predicted if treat = 0
y0ate <- predict(mod0, newdata = lalonde, type = "response")

mean(y1ate) - mean(y0ate) ## Risk difference ATE

## [1] 0.09917026

log(mean(y1ate) / mean(y0ate)) ## log(RR) ATE

## [1] 0.123929

log((mean(y1ate)/(1-mean(y1ate))) / (mean(y0ate)/(1-mean(y0ate)))) ## log(OR) ATE

## [1] 0.6336351
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Y BINARY, ‘BY HAND’ III

## P(income > 0) predicted if treat = 1 among treat = 1
y1att <- predict(mod1, newdata = subset(lalonde, treat == 1), type = "response")
## P(income > 0) predicted if treat = 0 among treat = 1
y0att <- predict(mod0, newdata = subset(lalonde, treat == 1), type = "response")

mean(y1att) - mean(y0att) ## Risk difference ATT

## [1] 0.05125712

log(mean(y1att) / mean(y0att)) ## log(RR) ATT

## [1] 0.07013562

log((mean(y1att)/(1-mean(y1att))) / (mean(y0att)/(1-mean(y0att)))) ## log(OR) ATT

## [1] 0.2613539
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Y BINARY, WITH THE marginaleffects PACKAGE I

library(marginaleffects)
mod <- glm(re78bin ~ treat * (age + educ + race + married + nodegree + re74),

data = lalonde, family = binomial) ## model with interactions

## Risk difference ATE
avg_comparisons(mod, variables = "treat")

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
## treat mean(1) - mean(0) 0.0992 0.0405 2.45 0.0144 6.1 0.0197 0.179
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response
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Y BINARY, WITH THE marginaleffects PACKAGE II

## log(RR) ATE
avg_comparisons(mod, variables = "treat", comparison = "lnratioavg")

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 %
## treat ln(mean(1) / mean(0)) 0.124 0.0498 2.49 0.0129 6.3 0.0263
## 97.5 %
## 0.222
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response

## log(OR) ATE
avg_comparisons(mod, variables = "treat", comparison = "lnoravg")

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
## treat ln(odds(1) / odds(0)) 0.634 0.29 2.19 0.0287 5.1 0.066 1.2
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response
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Y BINARY, WITH THE marginaleffects PACKAGE III

## Risk difference ATT
avg_comparisons(mod, variables = "treat", newdata = subset(lalonde, treat == 1))

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
## treat mean(1) - mean(0) 0.0513 0.0531 0.965 0.334 1.6 -0.0528 0.155
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response

## log(RR) ATT
avg_comparisons(mod, variables = "treat", newdata = subset(lalonde, treat == 1),

comparison = "lnratioavg")

Causal estimation Standardization Application with R 59 / 128



Y BINARY, WITH THE marginaleffects PACKAGE IV

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 %
## treat ln(mean(1) / mean(0)) 0.0701 0.0736 0.953 0.341 1.6 -0.0741
## 97.5 %
## 0.214
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response
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Y BINARY, WITH THE marginaleffects PACKAGE V

## log(OR) ATT
avg_comparisons(mod, variables = "treat", newdata = subset(lalonde, treat == 1),

comparison = "lnoravg")

##
## Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 %
## treat ln(odds(1) / odds(0)) 0.261 0.267 0.979 0.328 1.6 -0.262
## 97.5 %
## 0.785
##
## Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
## Type: response

Causal estimation Standardization Application with R 61 / 128



3
STANDARDIZATION

FUNDAMENTAL ASSUMPTIONS
MARGINAL EFFECT
FROM STRATIFICATION TO REGRESSION
FROM REGRESSION TO STANDARDIZATION
CAUSAL EFFECT IN TREATED INDIVIDUALS
STANDARDIZATION: GENERAL METHOD
APPLICATION WITH R
SUMMARY



SUMMARY I

Identifying a causal effect in an observational study relies on
fundamental assumptions: no interference, coherence, conditional
exchangeability, and positivity.
Under these assumptions, regression models allow estimating
conditional causal effects (stratum-specific), as well as potential
outcomes for each individual.
Standardization of conditional effects enables estimating a marginal
causal effect, of the same nature as that estimated in a randomized
controlled trial.
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SUMMARY II

The causal effect can pertain to the entire population (ATE), or to the
population of actually treated individuals (ATT), or even the untreated
individuals (ATC).
These causal effects depend on the distribution of confounding factors
L acting as effect modifiers. Two samples from two populations with
different distributions of these factors may lead to two different effect
estimations (without any bias). (similar to how two randomized trials
conducted in two different populations might yield different effect estimates)
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NOTE: MARGINAL VS. CONDITIONAL EFFECT

An effect can be marginal, like the average treatment effect (ATE):

vs.

ATE

Or conditional like the conditional average treatment effect (CATE), effect
conditional on certain levels of the variables L, for example:

vs.

CATE (ATEl)

The average treatment effect on the treated (ATT) and on the controlled (ATC)
are conditional CATEs on exposure A:

vs.

ATT (A = 1)

vs.

ATC (A = 0)
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VOCABULARY NOTE

Conditional vs. Adjusted?

The terms ’conditional’ and ’adjusted’ are often used interchangeably.
The terms ’marginal’ and ’unadjusted’ as well.
However, we now know that a marginal effect can be estimated from
an… adjusted model.

We should differentiate:

marginal/conditional: type of estimand targeted
unadjusted/adjusted: type of analysis performed
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CHANGE IN APPROACH

The method we are going to see now still relies on the fundamental
assumptions.
But instead of modeling E(Y jA;L), we will model E(AjL).

A Y

L

A Y

L
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COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
characteristic (stratum A or B).

Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14

Causal estimation Propensity score Why? 67 / 128



COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
characteristic (stratum A or B).

Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14

Number of individuals in the intervention group: 20

Number of individuals in the control group: 20

Number of individuals in the intervention group in stratum A: 10

Number of individuals in the intervention group in stratum B: 10

Number of individuals in the control group in stratum A: 10

Number of individuals in the control group in stratum B: 10

) Balance
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COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
characteristic (stratum A or B).

Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14

Risk difference in stratum A: 9=10� 5=10 = 4=10

Risk difference in stratum B: 5=10� 1=10 = 4=10

) The stratum is not an effect modifier

Causal estimation Propensity score Why? 67 / 128



COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
characteristic (stratum A or B).

Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14

Risk difference in stratum A: 9=10� 5=10 = 4=10
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COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
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Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14
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Intervention 9 1 5 5 14 6
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Odds ratio in stratum A: 9�55�1 = 9
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COLLAPSIBILITY

Here are the results of a randomized trial, reported based on an initial
characteristic (stratum A or B).

Stratum A Stratum B Together
Allocation Dead Alive Dead Alive Dead Alive
Intervention 9 1 5 5 14 6
Control 5 5 1 9 6 14

E(Y jA;L) = �+ 
L+ �A

Linear model and L is not an effect modifier) ATE = ATEl = �
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COLLAPSIBILITY

Indeed, the model used to estimate the odds ratio is not a linear model

E(Y jA;L) = �+ 
L+ �A

with � = mean difference
but a logistic model4

logitfE(Y jA;L)g = �+ 
L+ �A

with � = log(OR)

However, the expectation of a logit is not equal to the logit of the expectation

This phenomenon illustrates the non-collapsibility of the odds ratio

4logit(x) = log
(

x

1�x

)
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COLLAPSIBILITY

Neither of these two types of effects is biased here:
I the conditional effect quantified by the odds ratio is 9 (instead of

analyzing each stratum separately, one can obviously estimate the conditional OR
associated with A globally with a logistic regression adjusted on L)

I the marginal effect quantified by the odds ratio is 5.44
I for these two estimations, there is no confounding bias

We are talking about two different estimands.
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COLLAPSIBILITY

To estimate the marginal odds ratio from the logistic model
logitfE(Y jA;L)g = �+ 
L+ �A, one can use standardization
(which we did at the end of the previous class).
This property (collapsibility) sometimes favors certain measures of
association over others.
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COLLAPSIBILITY

Outcome type Measure of Association Collapsibility ?

Continuous Mean Difference Yes
Binary Odds Ratio No

Risk Difference Yes
Risk Ratio Yes

Censored Hazard Ratio No
Risk Difference at a Given Time Yes
Restricted Mean Survival Time
Difference

Yes

? Do conditional and marginal measures coincide?
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DIFFICULTIES IN MODELING Y

Correct model specification is challenging when the number of
variables L for adjustment is large.
Verifying this correct model specification from the data is not
straightforward.
I Extrapolation phenomenon: multiple different specifications tailored to

the observed data.

Logistic and Cox models are biased in the case of rare events.
I Finite sample bias: the smaller the number of events per variable, the

more biased these models will be.
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WHICH LEADS US TO THE FOLLOWING QUESTION…

In an observational cohort study, can we estimate the marginal effect more
directly, i.e., without modeling Y and then standardizing?
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DEFINITION

The propensity score (e) is the individual probability of being exposed to the
treatment (A = 1), given the subject’s characteristics L before exposure.

e = P (A = 1jL = l)

(where L represents all of the subject’s characteristics).
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PROPERTIES

Conditional Exchangeability
If Y 0 and Y 1 are independent of A conditional on L:

Y a ? AjL 8 a 2 (0; 1)

then Y 0 and Y 1 are independent of A conditional on e :

Y a ? Aje 8 a 2 (0; 1)

) Reduces the problem of accounting for multiple confounding factors to a
single dimension.
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ESTIMATION

In an observational study, the probability of being treated is unknown and
must be estimated.
Most often, this estimation relies on a logistic regression model, where the
exposure to the treatment A is the dependent variable, and the k observed
covariates L are the explanatory variables:

P (A = 1jL = l) =
exp(�0 + �1L1 + �2L2 + � � �+ �kLk)

1 + exp(�0 + �1L1 + �2L2 + � � �+ �kLk)

Once the parameters (the �s) of the model are estimated, the propensity
score for each subject is calculated based on their individual characteristics.
The validity of methods based on the propensity score relies on the correct
specification of this model.
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THE IDEA

Identify and compare treated and untreated subjects who have the
same initial probability of being exposed to the treatment, similar to
what occurs in a randomized controlled trial
Subjects who are treated and untreated but have a similar initial
probability of being treated will also tend to have similar initial
characteristics
This approach aims to replicate conditions of quasi-randomization
The propensity score is estimated for each study, and within the same
study, each time a different treatment is analyzed
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THE DIFFERENT STEPS

1) List a priori all variables to be considered, whether measured or not

2) Estimate the propensity score (see previous slides)
3) Use the propensity score to balance the characteristics of subjects

between the exposed and unexposed groups
4) Assess the balance before and after using the propensity score, and

return to step 2 until the balance is satisfactory
5) Estimate the (marginal) effect of the exposure

At each step, there are one or more questions to consider…
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STEP 1

Which variables?
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STEP 1: WHICH VARIABLES?

Non-parsimonious model: there is no limit (other than “technical”
constraints) on the number of variables to include
Ideally, the model linking exposure to characteristics includes:
1) All confounding factors
2) All variables related solely to Y (a.k.a. prognostic factors)
3) No variables related solely to A (a.k.a. instrumental variables)

Including prognostic factors improves the precision of the estimation,
while including instrumental variables decreases precision and may
even increase bias
Estimating the propensity score model is, therefore, quite
counter-intuitive: we are not looking for variables that best predict A!
In fact, you should choose the same variables as when modeling
E(Y jA;L) (where this choice is less counter-intuitive).
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STEP 1: WHICH VARIABLES?

Selection criteria: literature review, expert opinion, … Produce a DAG!
Do not rely only on the “p-value” of the included variables or on
stepwise selection processes
I Omitting a variable, even one weakly associated, biases the estimation

of the treatment effect
I And “p-value > 0.05” does not mean “no association,” but rather “no

statistically significant association”

Do not use global statistics (such as AUC for “area under the ROC
curve”) to evaluate the “quality” of the propensity model
I On the contrary, an AUC close to 1 indicates that the treatment effect

cannot be evaluated in the study
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STEP 2

How to evaluate the quality of
the model?
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STEP 2: EVALUATE THE QUALITY OF THE MODEL

Once the propensity model and the propensity score (PS) for each patient
are estimated, we can plot the distribution (e.g., histogram) of the PS in each
treatment group.
When developing a logistic model, it is common practice to evaluate the
quality of predictions with the AUC. The larger the AUC, the less overlap
there is in the distribution of the PS between treated and untreated groups.
) Let’s examine the different possible scenarios.
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STEP 2: DISTRIBUTION OF THE PS BY TREATMENT GROUP

A = 0

A = 1

0 1
e

Perfectly predictable treatment exposure (AUC = 1)
! two groups of patients: the “always” and the “never”
! situation where the treatment effect cannot be estimated
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STEP 2: DISTRIBUTION OF THE PS BY TREATMENT GROUP

A = 0 A = 1

0 1
e

Non-predictable treatment exposure (AUC = 0:5)
! each patient in the treated group corresponds to a patient in the
untreated group with the same propensity to receive the treatment
! situation so ideal that the use of the propensity score does not change
the estimation of the treatment effect (because it is close to what would be
observed in a randomized trial)
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STEP 2: DISTRIBUTION OF THE PS BY TREATMENT GROUP

A = 0 A = 1

0 1
e

Partially predictable exposure to treatment (0:5 < AUC < 1)
! the two distributions overlap
! “ideal” situation for using the propensity score
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STEP 2: DISTRIBUTION OF THE PS BY TREATMENT GROUP

A certain degree of randomness in the assignment of the treatment is
necessary, even in an observational study!
Which fundamental assumption is being referred to here?

The
positivity assumption: there are both treated and untreated subjects
for all levels of all considered variables

Consequence: if it is known (a priori or during the exploration of the
database) that some individuals are always or never treated, they
should be removed from the analysis

Therefore, the AUC is not a good measure of the quality of the
propensity model: one should neither seek to maximize nor minimize
it (again: we are not looking for variables that best predict A)
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REMINDER: FUNDAMENTAL ASSUMPTIONS OF CAUSAL INFERENCE IN OB-
SERVATIONAL STUDIES

1) No interference
2) Consistency
3) Conditional exchangeability
4) Positivity
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STEP 3

What methods of utilization?
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STEP 3: METHODS FOR USING THE ESTIMATED PROPENSITY SCORE

Four methods are available:

Adjustment
Stratification
Matching
Weighting (Inverse Probability of Treatment Weighting, IPTW)

Weighting is a particularly elegant, flexible method, with good performance
in most situations.
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PRINCIPLE OF WEIGHTING

Each subject is weighted, with the weight ŵ directly derived from the
estimated propensity score (PS) of each individual.

ŵ = 1=ê for treated individuals
ŵ = 1=(1� ê) for untreated individuals
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INTUITION BEHIND WEIGHTING

If a treated individual has a low estimated probability of receiving
treatment (A = 1 and small ê), it means there are many similar
individuals to them who did not receive treatment (A = 0 and small
ê).
After weighting, this individual will be overrepresented in the analysis
(if ê is small, 1=ê is large), to “compensate” for the rarity of their
characteristics in the treated group compared to the untreated group.

Conversely, if a treated individual has a high estimated probability of
receiving treatment (A = 1 and large ê), they will be
underrepresented after weighting (1=ê small), to “compensate” for the
frequency of their characteristics in the treated group compared to the
untreated group.

And vice versa
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ILLUSTRATION

In the weighted pseudo-population, treated and untreated groups will have
balanced characteristics on average, thus restoring exchangeability.
(only on the variables included in the propensity score model)
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ILLUSTRATION

Initial population

Characteristics Total, N = 10000 Treated, N = 3,489 Untreated, N = 6,511

Dosage, mean (SD) 423 (50) 438 (48) 415 (49)
Male, n (%) 4,099 (41%) 1,613 (46%) 2,486 (38%)

Weighted population

Characteristics Total, N = 19989 Treated, N = 9,985 Untreated, N = 10,004

Dosage, mean (SD) 423 (50) 423 (49) 423 (50)
Male, n (%) 8,185 (41%) 4,084 (41%) 4,101 (41%)
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STEP 4

How to check balance?
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STEP 4 : CHECKING BALANCE

The goal is to achieve balance in terms of characteristics between
treated and untreated patients

No need to perform usual group comparison tests: just because a
difference is not statistically significant doesn’t mean it doesn’t
introduce bias in the estimation of treatment effect
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STEP 4: CHECKING BALANCE

Plot the distribution of the propensity score by treatment group before
and after weighting! overlapping distributions

Plot the distribution of each initial characteristic by treatment group
before and after weighting! overlapping distributions

Calculate the standardized difference between the two groups before
and after weighting for each characteristic! jd j < 10%.

Quantitative characteristic Qualitative characteristic

d = 100
�̂A=1 � �̂A=0√

�̂2
A=1

+�̂2
A=0

2

d = 100
p̂A=1 � p̂A=0√

p̂A=1(1�p̂A=1)+p̂A=0(1�p̂A=0)
2
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EXAMPLE

Gayat et al. Intensive Care Medicine, 2010
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STEP 5

How to estimate the effect?
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ESTIMATING THE MARGINAL TREATMENT EFFECT

In the weighted sample, once balance is achieved
Direct comparison of treated and untreated on Y : once the propensity
score has restored balance, the analysis is “univariable”!
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WEIGHTING ON THE PROPENSITY SCORE

Calculating the treatment effect in the weighted sample
Estimating the ATE

ATE =

∑n
i=1 YiAiwi

Aiwi

�

∑n
i=1 Yi(1� Ai)wi

(1� Ai)wi

= ”Weighted mean of Y among treated”

minus ”Weighted mean of Y among untreated”

Causal estimation Propensity score The steps 101 / 128



WEIGHTING ON THE PROPENSITY SCORE

Characteristic Total, N = 19989 Treated, N = 9,985 Untreated, N = 10,004

Dosage, mean (SD) 423 (50) 423 (49) 423 (50)
Male, n (%) 8,185 (41%) 4,084 (41%) 4,101 (41%)
Dead, n (%) 13,384 (67%) 6,317 (63%) 7,067 (71%)

[ATE = 63� 71 = �8%
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WEIGHTING ON THE PROPENSITY SCORE

SCOOP! Estimating the ATT is possible with weighting!

ŵ 0 = 1 for treated individuals
ŵ 0 = ê=(1� ê) for untreated individuals

(Other types of weights exist, depending on the target population)
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WEIGHTING ON THE PROPENSITY SCORE

Characteristic Total, N = 6982 Treated, N = 3,489 Untreated, N = 3,493

Dosage, mean (SD) 438 (48) 438 (48) 438 (49)
Male, n (%) 3,228 (46%) 1,613 (46%) 1,615 (46%)
Dead, n (%) 4,943 (71%) 2,320 (66%) 2,623 (75%)

[ATT = 66� 75 = �9%
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ESTIMATION VARIANCE

Attention must be paid to estimating the variance of the effect!

1) Take into account how the analyzed sample was constituted
(correlation between individuals in the same stratum or matched,
weighting of individuals who then contribute more than once to the
analysis): calculate robust variances
I Otherwise, underestimation of the variance is possible! ) increased

risk of obtaining a significant effect mistakenly
I In R: survey package and svyglm function, cluster option in coxph

function…

2) Take into account the propensity score estimation step
I Otherwise, over or underestimation of the variance is possible!
I More challenging

Regardless of the method, the simplest way is to estimate the variance of
the effect by bootstrap, by re-estimating the propensity model in each
bootstrap sample
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SUMMARY

Reduces the problem of considering multiple confounding factors to a
single dimension
Estimation of ATE or ATT (and others exist!)
I Choice depending on the research objective!

Particularly useful:
I if exposure is not too rare, many factors to consider, and few events of

interest
I if interested in multiple different outcomes Y
I if interested in the marginal treatment effect

But only takes into account measured factors: does not solve the
problem of unmeasured confounding any better!
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DATABASE

Outcome: Time to death
Exposure T rt (1 ou 0)
Confounding factors : one binary (B), one continuous (C)

Exposure effect : log(HR) = log(1=2) = �0:69
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DATABASE

head(df)

## id time status age smoking Trt
## 1 1 1.8100826 0 45.19058 1 0
## 2 2 0.1849345 1 54.77195 1 1
## 3 3 18.8250355 0 47.05518 1 0
## 4 4 14.2559600 0 47.18936 0 0
## 5 5 6.1861925 0 43.76213 1 0
## 6 6 6.0899116 1 49.11622 1 0
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NAIVE ESTIMATION

library(survival)
mod <- coxph(Surv(time, status) ~ Trt, data = df)
summary(mod)

## Call:
## coxph(formula = Surv(time, status) ~ Trt, data = df)
##
## n= 5000, number of events= 3023
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Trt -0.25037 0.77852 0.04533 -5.523 3.33e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Trt 0.7785 1.284 0.7123 0.8508
##
## Concordance= 0.513 (se = 0.004 )
## Likelihood ratio test= 32 on 1 df, p=2e-08
## Wald test = 30.51 on 1 df, p=3e-08
## Score (logrank) test = 30.66 on 1 df, p=3e-08
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CONDITIONAL MODEL

mod <- coxph(Surv(time, status) ~ Trt + age + smoking, data = df)
summary(mod)

## Call:
## coxph(formula = Surv(time, status) ~ Trt + age + smoking, data = df)
##
## n= 5000, number of events= 3023
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Trt -0.832446 0.434984 0.048588 -17.13 <2e-16 ***
## age 0.140381 1.150712 0.006372 22.03 <2e-16 ***
## smoking 1.491806 4.445118 0.042980 34.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Trt 0.435 2.299 0.3955 0.4784
## age 1.151 0.869 1.1364 1.1652
## smoking 4.445 0.225 4.0860 4.8358
##
## Concordance= 0.735 (se = 0.004 )
## Likelihood ratio test= 1683 on 3 df, p=<2e-16
## Wald test = 1532 on 3 df, p=<2e-16
## Score (logrank) test = 1651 on 3 df, p=<2e-16
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PS ESTIMATION

## Régression logistique
modT <- glm(Trt ~ age + smoking, data = df, family = "binomial")
summary(modT)

##
## Call:
## glm(formula = Trt ~ age + smoking, family = "binomial", data = df)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -15.88242 0.66486 -23.888 <2e-16 ***
## age 0.28002 0.01282 21.848 <2e-16 ***
## smoking 0.66992 0.07798 8.591 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5309.3 on 4999 degrees of freedom
## Residual deviance: 4667.5 on 4997 degrees of freedom
## AIC: 4673.5
##
## Number of Fisher Scoring iterations: 5

df$probT <- predict(modT, type = "response")
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WEIGHTS ESTIMATION

## Weights (ATE)
df$denom <- ifelse(df$Trt == 1, df$probT, 1 - df$probT)
df$wATE <- 1/df$denom
## Weights (ATT)
df$denom <- ifelse(df$Trt == 1, 1, (1 - df$probT)/df$probT)
df$wATT <- 1/df$denom
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WEIGHTS ESTIMATION

head(df)

## id time status age smoking Trt probT denom wATE
## 1 1 1.8100826 0 45.19058 1 0 0.07187021 12.913972 1.077436
## 2 2 0.1849345 1 54.77195 1 1 0.53112187 1.000000 1.882807
## 3 3 18.8250355 0 47.05518 1 0 0.11545547 7.661348 1.130525
## 4 4 14.2559600 0 47.18936 0 0 0.06485559 14.418870 1.069354
## 5 5 6.1861925 0 43.76213 1 0 0.04934562 19.265223 1.051907
## 6 6 6.0899116 1 49.11622 1 0 0.18861141 4.301906 1.232455
## wATT
## 1 0.07743551
## 2 1.00000000
## 3 0.13052533
## 4 0.06935356
## 5 0.05190700
## 6 0.23245510
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TREATMENT EFFECT

## ATE
mod <- coxph(Surv(time, status) ~ Trt + cluster(id), data = df, weight = wATE)
summary(mod)

## Call:
## coxph(formula = Surv(time, status) ~ Trt, data = df, weights = wATE,
## cluster = id)
##
## n= 5000, number of events= 3023
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Trt -0.68569 0.50374 0.02771 0.06237 -10.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Trt 0.5037 1.985 0.4458 0.5692
##
## Concordance= 0.581 (se = 0.008 )
## Likelihood ratio test= 625.1 on 1 df, p=<2e-16
## Wald test = 120.9 on 1 df, p=<2e-16
## Score (logrank) test = 635.3 on 1 df, p=<2e-16, Robust = 147.9 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).

Causal estimation Propensity score Application with R 114 / 128



TREATMENT EFFECT

## ATT
mod <- coxph(Surv(time, status) ~ Trt + cluster(id), data = df, weight = wATT)
summary(mod)

## Call:
## coxph(formula = Surv(time, status) ~ Trt, data = df, weights = wATT,
## cluster = id)
##
## n= 5000, number of events= 3023
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Trt -0.64851 0.52283 0.05414 0.04755 -13.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Trt 0.5228 1.913 0.4763 0.5739
##
## Concordance= 0.579 (se = 0.007 )
## Likelihood ratio test= 145.4 on 1 df, p=<2e-16
## Wald test = 186 on 1 df, p=<2e-16
## Score (logrank) test = 148.2 on 1 df, p=<2e-16, Robust = 200.6 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
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DOUBLY ROBUST ESTIMATORS I

Standardization on one hand, and methods based on the propensity
score on the other hand, rely on models that need to be correctly
specified.
Doubly robust methods provide two chances to “be right”: they work if
at least one of the models A � f (L) or Y � g(A;L) is correctly
specified.
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DOUBLY ROBUST ESTIMATORS II

In fact… we’ve already seen it!

After weighting on the propensity score, estimating the treatment
effect relies on a univariable model, including only A) the outcome
model Y � g(A;L) is misspecified (as it does not include L)
The models used for standardization are estimated using the same
weight for all individuals) the propensity model A � f (L) is
misspecified (as it does not include L)
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DOUBLY ROBUST ESTIMATORS III

We can “deduce” that standardizing from models weighted on the propensity
score is a doubly robust method
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WEIGHTING AND STANDARDIZING : EXAMPLE I

set.seed(123)
## Simulation of 1000 individuals
n <- 1000
## Two independent variables N(0,1)
L1 <- rnorm(n)
L2 <- rnorm(n)
## A ~ L1 + L2
A <- rbinom(n, 1, prob = plogis(L1 + L2))
## Y ~ A + L1 + L2
Y <- rnorm(n, mean = A + L1 + L2)
df <- data.frame(L1 = L1, L2 = L2, A = A, Y = Y)
df[1:3, ]

## L1 L2 A Y
## 1 -0.5604756 -0.99579872 0 -2.2350820
## 2 -0.2301775 -1.03995504 1 0.3041802
## 3 1.5587083 -0.01798024 1 1.8362135

Theoretical effet of A on Y : 1
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WEIGHTING AND STANDARDIZING : EXAMPLE II

Correctly specified models:

Agood <- glm(A ~ L1 + L2, data = df, family = binomial) ## Propensity model
df$pgood <- predict(Agood, type = "response") ## Propensity score
df$wgood <- ifelse(df$A == 1, 1/df$pgood, 1/(1-df$pgood)) ## Weights
Y1good <- glm(Y ~ L1 + L2, data = df[df$A == 1, ]) ## Prediction if A = 1
Y0good <- glm(Y ~ L1 + L2, data = df[df$A == 0, ]) ## Prediction if A = 0
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WEIGHTING AND STANDARDIZING : EXAMPLE III

Uncorrectly specified models: missing L2

Abad <- glm(A ~ L1, data = df, family = binomial) ## Propensity model
df$pbad <- predict(Abad, type = "response") ## Propensity score
df$wbad <- ifelse(df$A == 1, 1/df$pbad, 1/(1-df$pbad)) ## Weights
Y1bad <- glm(Y ~ L1, data = df[df$A == 1, ]) ## Prediction if A = 1
Y0bad <- glm(Y ~ L1, data = df[df$A == 0, ]) ## Prediction if A = 0
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WEIGHTING AND STANDARDIZING : EXAMPLE IV

Standardization

With correctly specified models

mean(predict(Y1good, newdata = df)) - mean(predict(Y0good, newdata = df))

## [1] 1.015952

With uncorrectly specified models

mean(predict(Y1bad, newdata = df)) - mean(predict(Y0bad, newdata = df))

## [1] 1.911068
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WEIGHTING AND STANDARDIZING : EXAMPLE V

Pondération

With correctly specified models

glm(Y ~ A, data = df, weight = wgood)$coefficients["A"]

## A
## 1.05794

With uncorrectly specified models

glm(Y ~ A, data = df, weight = wbad)$coefficients["A"]

## A
## 1.936891
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WEIGHTING AND STANDARDIZING : EXAMPLE VI

Weighting + standardization

Model for A correctly specified, models for Y uncorrectly specified

Y1badwgood <- glm(Y ~ L1, data = df[df$A == 1, ], weight = wgood)
Y0badwgood <- glm(Y ~ L1, data = df[df$A == 0, ], weight = wgood)
mean(predict(Y1badwgood, newdata = df)) - mean(predict(Y0badwgood, newdata = df))

## [1] 1.034155

Model for A uncorrectly specified, models for Y correctly specified

Y1goodwbad <- glm(Y ~ L1 + L2, data = df[df$A == 1, ], weight = wbad)
Y0goodwbad <- glm(Y ~ L1 + L2, data = df[df$A == 0, ], weight = wbad)
mean(predict(Y1goodwbad, newdata = df)) - mean(predict(Y0goodwbad, newdata = df))

## [1] 1.032516

Causal estimation Going further Double Robustness 124 / 128



DOUBLY ROBUST ESTIMATORS

There are other doubly robust estimators.
Some may also incorporate machine learning methods, which allow for
great flexibility regarding the ‘models’ involved.
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INFORMATIVE MISSING DATA AND CENSORING

Missing data (with censoring being a particular case) can be “handled” as we
did for an intervention: through counterfactual reasoning!

What would have been the average outcome
if the entire population had no missing data?

,

E(Y C=0)5

Inverse Probability of Censoring Weighting (IPCW): weight the population
(containing missing data) to make it similar to what it would have been
without missing data

5C = 0 : non-missing data
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G-METHODS

Jamie Robins and colleagues introduced three methods (the “g-methods”) to
estimate a causal effect in the presence of time-dependent exposure and
confounding factors:

Inverse probability weighting of marginal structural models
(Robins et al 2000, Epidemiology)
! Generalization of propensity score weighting
G-computation formula
(Robins 1986, Mathematical Modelling)
! Generalization of standardization
G-estimation of structural nested models
(Robins et al 1992, Epidemiology)
! ‘Generalization’ of propensity score adjustment
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EMULATION OF A TARGET CLINICAL TRIAL

(Good) RCTs do not suffer (or suffer less) from:

confounding bias due to randomization
selection bias and measurement error because their protocols plan a
priori selection criteria, intervention, outcome, and follow-up

Hernán and Robins (2016) proposed a formal approach to adopt the same
design principles in observational data-based research
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