
Internship proposal
Root cause analysis based on
difference graph discovery

Context: The Pierre Louis Institute of Epidemiology and Public Health (IPLESP), co-accredited by Inserm
and Sorbonne University, brings together research strengths in epidemiology and public health within Sor-
bonne University. IPLESP’s main objective is to produce original knowledge on pressing public health issues
and related intervention effectiveness, focusing on emerging infectious diseases, chronic diseases, environmen-
tal health, and mental health. To tackle these challenges, causal inference [Pearl, 2000, Hernan and Robins, 2023]
emerges as an indispensable tool. Therefore, at IPLESP, we are establishing a new team dedicated to developing
advanced methodologies rooted in causal inference. One objective of this team is to address root cause analysis
challenges in epidemiology, requiring robust methodologies amid increasing data volumes and the intricate
interplay of various factors.

Consider a setting in which observational data contain anomalies. Root cause analysis seeks to identify
which of these anomalies are the original sources that have causally propagated and triggered the others. This
problem has garnered increasing interest in recent years, leading to notable methodological progress [Bud-
hathoki et al., 2022, Ikram et al., Assaad et al., 2023, Zan et al., 2024]. In particular, the method proposed
in Assaad et al. [2023] combines prior knowledge encoded in a Summary Causal Graph with time series data
from both normal and anomalous regimes to infer a Difference Graph [Assaad, 2025] that reveals changes in
causal mechanisms. However, this approach relies on a linearity assumption. More recently, new methods have
been developed to learn Difference Graphs directly from data [Wang et al., 2018, Chen et al., 2023, Malik et al.,
2024, Bystrova et al., 2024]–without requiring prior causal knowledge or assuming linear relationships. Yet,
these data-driven approaches have not been explored in the context of root cause analysis and they have not
been extended to time series.

Proposal: The primary objective of this internship is to explore the use of Difference Graph discovery meth-
ods for root cause analysis, with a particular focus on time series data. The goal is to design a novel algorithm
for discovering Difference Graphs suited to root cause detection, and to assess its effectiveness on real-world
epidemiological datasets.

Required skills: Highly motivated candidate with an M2 degree and strong background in probability,
machine learning, and causal inference, along with a keen interest in epidemiology. Proficiency in programming
is also required. The candidate will have the opportunity to persue a PhD in causal inference.

Location: The intern will work at IPLESP (https://iplesp.fr/), located in Paris. She/he will be super-
vised by Timothée Loranchet, Daria Bystrova, and Charles Assaad.

Dates: Starting date: To be discussed, early 2026, for a duration of 5-6 months.

Contact: To apply, please send a CV and a cover letter to Timothée Loranchet timothee.loranchet@inserm.fr
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