
Internship Proposal
Hybrid Federated Causal Discovery

Context: The Pierre Louis Institute of Epidemiology and Public Health (IPLESP), co-accredited by Inserm
and Sorbonne University, brings together research strengths in epidemiology and public health within Sor-
bonne University. IPLESP’s main objective is to produce original knowledge on pressing public health issues
and related intervention effectiveness, focusing on emerging infectious diseases, chronic diseases, environmen-
tal health, and mental health. To tackle these challenges, causal inference Pearl et al. [2000], Hernan and Robins
[2025] emerges as an indispensable tool. Therefore, at IPLESP, we are establishing a new team dedicated to
developing advanced methodologies rooted in causal inference.
In this context, access to causal graphs is essential for estimating causal effects [Greenland et al., 1999, Savitz and
Wellenius, 2016]. These graphs represent qualitative cause-and-effect relationships between exposures, health
outcomes, and other variables. However, in many applications, it is challenging for a practitioner to provide
such a graph. To this end, Causal Discovery Spirtes et al. [2000], an active research field of causal inference, at-
tempts to discover a causal graph from observational data. New methods are regularly proposed, but no single
method stands out. Indeed, they all rely on assumptions that may or may not be appropriate for a particular
dataset Assaad et al. [2022]. In many cases, the results of causal discovery methods are still unsatisfactory in
real-world applications Aı̈t-Bachir et al. [2023]. Nevertheless, it has been shown that multiple datasets from dif-
ferent environments can improve causal discovery Mooij et al. [2020], Huang et al. [2020]. However, the French
regulatory context, characterized by the extremely strict application of the General Data Protection Regulation
(GDPR) to preserve data confidentiality, makes creating a causal graph from multiple datasets challenging.
Therefore, it is important to start developing a federated causal discovery method that preserves privacy. Fed-
erated in the sense that we need to learn a causal graph (or an abstraction) from many datasets representing
all these datasets and preserving confidentiality in the sense that we cannot compromise patient privacy Mian
et al. [2023]. Federated causal discovery is crucial in the current context, especially in the healthcare field. This
is particularly relevant when considering the existence of a causal graph representing complex relationships,
not recoverable solely from data from a single environment but recoverable by combining data from multiple
environments.

Proposal: The objective of the internship is to develop a hybrid method for federated causal discovery.
Indeed, as shown in Bystrova et al. [2024], mixing different causal discovery methods allows to relax some of
the canonical assumptions in causal discovery. To this end, the candidate will:

• Familiarize with causal discovery Spirtes et al. [2000] and federated causal discovery literature Mian et al.
[2023], Li et al. [2024], Wang et al. [2023], Yang et al. [2023], Meurisse et al. [2023], Vo et al. [2021], Xiong
et al. [2023].

• Implement a hybrid method for federated causal discovery.

• Validate the method on synthetic and real-world data.

Candidate profile: Highly motivated candidate with an M2 degree and a strong background in computer
science, machine learning, probability, and causal inference, along with a keen interest in epidemiology and
public health. Proficiency in Python programming is also required. Knowledge of the English language is
required.

Location: The intern will work at IPLESP (https://iplesp.fr/), located in Paris. They will be supervised by
Federico Baldo (PostDoc) and Charles Assaad.

Dates: Starting date: To be discussed, early 2026, for 5-6 months.

Contact: To apply, please send a CV and a cover letter to Federico Baldo federico.baldo@inserm.fr, only
candidature in English will be examined.
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